FPGA-Based Data Acquisition Card for Chicken Egg Incubator Monitoring System: Development and Synthesis with Open-source EDA
Yakti Muhammad Anakapati, Mr. Mr. Prof. Dr. Ir. Jazi Eko Istiyanto, M.Sc., IPU., ASEAN Eng.
2025 | Skripsi | ELEKTRONIKA DAN INSTRUMENTASIPertumbuhan sistem embedded dan teknologi IoT telah mendesak kebutuhan akan sistem akuisisi data yang skalabel, andal, dan real-time, khususnya dalam pemantauan lingkungan di mana kinerja sistem sangat krusial. Dalam bidang ini, inkubasi telur ayam memerlukan pengawasan ketat terhadap suhu dan kelembapan idealnya dipertahankan dalam rentang ±0,5?°C dari setpoint 37,5?°C karena fluktuasi sekecil 1?°C dapat menurunkan tingkat penetasan sebesar 10–30% serta berpotensi menyebabkan kelainan pada anak ayam. Sistem berbasis mikrokontroler umum, seperti ESP32 dengan sensor DHT11 untuk pemantauan inkubator, mengalami penundaan berurutan saat mengakuisisi data dari banyak sensor atau sekitar 1 deik per sensor. Akibatnya, pembacaan suhu dapat berosilasi melebihi ±1?°C, dan hingga 50% pembacaan bisa tidak valid menurut beberapa referensi. Walaupun studi sebelumnya telah mengkaji dampak biologis pergeseran suhu inkubasi, masih sedikit penelitian yang membandingkan secara kuantitatif metrik kinerja antara solusi mikrokontroler dan FPGA. Penelitian ini mengimplementasikan sistem akuisisi data paralel berbasis FPGA dengan kemampuan pemantauan IoT, dikembangkan sepenuhnya menggunakan alat EDA open-source (Yosys & NextPNR). Sistem ini menghubungkan secara paralel tiga sensor DHT11 untuk suhu dan kelembapan, sekaligus menyalurkan data melalui UART ke ESP32 untuk visualisasi IoT via dashboard cloud. Paralelisme spasial inherent FPGA dapat mengatasi latensi sampling mikrokontroler dengan memperoleh data hampir secara real-time meski menggunakan sensor lambat seperti DHT11. Sistem kami menyelesaikan akuisisi multi-saluran dan transmisi UART dalam 33,72?ms sekitar 30× lebih cepat dibanding akuisisi berurutan pada mikrokontroler. Dengan mengaitkan pengaruh latensi terhadap perkembangan embrio seperti dijelaskan studi terdahulu, penelitian ini membuktikan adanya alternatif efisien bagi sistem pemantauan inkubasi berbasis mikrokontroler.
The growth of embedded systems and IoT technologies have urgently demanded scalable, robust, and real-time data acquisition systems specifically in environmental monitoring systems where system performance is integral. In the field of environment monitoring, chicken egg incubation requires strict monitoring for temperature and humidity levels ideally maintained within ±0.5?°C of the 37.5?°C setpoint where even oscillations as small as 1 °C can reduce the hatch rate by 10-30% as well as develop deformities to the chicks. Typical microcontrollerbased systems, such as the ESP32 and DHT11 sensors for egg incubator monitoring systems, endure sequential delays when acquiring data from multiple sensors or approximately 1 second per sensor thus oscillating temperature readings above ±1?°C as well as invalid readings up to 50?cording to several references. While previous studies provide the biological impact of incubation temperature shifts, there are limited studies that provide statistics comparing performance metrics between microcontroller and FPGA solutions. This research intends to implement an FPGA-based parallel data acquisition system with IoT monitoring capabilities developed exclusively with open-source electronic design automation tools. The system interfaces with 3 DHT11 temperature and humidity sensors in parallel while also being able to transmit sampled data over UART to an ESP32 microcontroller for IoT monitoring via cloud-based dashboards. The FPGA's inherent spatial parallelism capabilities can counter microcontroller sampling latency by acquiring almost real-time data even with slow sensors like the DHT11. The system performs multi-channel parallel acquisition and UART transmission in 33.72 ms or 30 times faster than sequential microcontroller acquisition. By connecting the impact of latency to egg development in previous studies, the research proves an efficient alternative to a microcontroller incubation monitoring system.
Kata Kunci : FPGA, Parallel Processing, IoT, Data Acquisition, Open Source