Pemantauan Lendutan Menggunakan Robotic Total Station TS16 pada Flyover Lingkar Aloha dengan Uji Pembebanan
MOLEK DARA CAHAYAMATA, Dr. Ir. Bilal Ma’ruf, S.T., M.T.
2025 | Skripsi | TEKNIK GEODESI
Pembangunan
Flyover Aloha yang berada di Kabupaten Sidoarjo, Jawa Timur telah
selesai pada tahap konstruksi, karena itu harus dilakukan uji kelayakan sesuai dengan
Peraturan Menteri PUPR No. 41 tahun 2015 tentang Penyelenggaraan Keamanan
Jembatan dan Terowongan Jalan. Salah satu uji kelayakan yang dilakukan, yaitu
uji beban. Uji beban jembatan layang dilakukan dengan memberi beban truk untuk
mengetahui respons perubahan posisi vertikal dan horizontal struktur jembatan
layang menggunakan Robotic Total Station (RTS). Penelitian ini bertujuan
untuk mendapatkan besar, arah, dan pola lendutan berdasarkan perubahan posisi
titik pengamatan pada flyover struktur baja di segmen utara dan pada flyover
struktur beton di segmen selatan saat diberi variasi beban truk. Penelitian
ini juga bertujuan menentukan kelayakan struktur jembatan berdasarkan besaran
lendutan vertikal yang terukur dengan robotic total station terhadap
batas izin lendutan yang mengacu pada American Association of State Highway
and Transportation Officials Load and Resistance Factor Design Bridge Design
Specifications, edisi keenam tahun 2012.
Tahapan
penelitian ini dimulai dengan persiapan data, yang meliputi penentuan koordinat
titik kontrol menggunakan empat titik referensi (RTS dan backsight),
verifikasi distribusi titik pantau, dan penetapan skema pembebanan. Pemantauan
dilakukan menggunakan RTS di dua segmen flyover yaitu, segmen utara
(struktur baja) dengan sembilan titik pantau dan segmen selatan (struktur
beton) dengan lima titik pantau. Penelitian ini mencakup lima simulasi
pembebanan bertahap, dimulai dari kondisi tanpa beban (0 truk), dilanjutkan
dengan 2 truk, 4 truk, 6 truk, hingga mencapai beban maksimum dengan 8 truk
yang memiliki total muatan 202,98 ton (rata-rata 25 ton per truk). Setelah
pembebanan maksimum, pengurangan beban dilakukan secara bertahap hingga kembali
ke kondisi tanpa beban (0 truk). Data hasil pengukuran dari 14 titik pantau,
yang mencakup sudut horizontal, sudut vertikal, jarak, serta koordinat easting,
northing, dan elevasi, diunduh dan diolah menggunakan perangkat lunak
GeoMoS. Hasil pengukuran setiap simulasi dibandingkan dengan batas izin
lendutan sesuai standar AASHTO LRFD Bridge Design Specifications edisi
2012, untuk mengevaluasi kelayakan struktur flyover. Analisis juga
mencakup pola dan arah lendutan pada setiap titik pantau guna mengidentifikasi
perilaku struktur terhadap variasi beban, baik di segmen utara maupun
selatan.
Hasil
penelitian menunjukkan bahwa besar lendutan vertikal terbesar di segmen utara
mencapai -13,66 mm pada simulasi beban maksimum (8 truk), sedangkan di segmen
selatan mencapai -13,8 mm. Setiap titik pantau dihitung untuk mendapatkan pola,
arah, dan besar lendutan pada kondisi sebelum dan sesudah pembebanan. Analisis
terhadap lendutan horizontal mengindikasikan pergeseran yang berbeda di setiap
titik, dengan pola arah yang relatif konsisten pada beberapa titik, meskipun
terdapat variasi akibat distribusi beban yang tidak seragam. Visualisasi pola
lendutan juga memberikan gambaran mendetail terkait distribusi pergeseran di
seluruh titik pantau, baik secara vertikal maupun horizontal. Semua hasil
lendutan dibandingkan dengan batas izin lendutan yang ditentukan berdasarkan
AASHTO LRFD Bridge Design Specifications edisi 2012, di mana batas
maksimum lendutan untuk segmen utara adalah 90,0625 mm dan untuk segmen selatan
adalah 44,0625 mm. Hasil lendutan yang diukur pada kedua segmen flyover
berada di bawah batas izin, sehingga struktur dinyatakan layak dan stabil untuk
menahan variasi beban.
The
construction of the Aloha Flyover in Sidoarjo Regency, East Java, has been
completed in the construction phase, therefore a feasibility test must be
conducted according to the Ministry of Public Works and Housing Regulation No.
41 of 2015 concerning the Safety Management of Bridges and Tunnels. One of the
feasibility tests carried out is the load test. The load test on the flyover is
conducted by applying a truck load to determine the response of vertical and
horizontal position changes in the flyover structure using a Robotic Total
Station (RTS). This study aims to obtain the magnitude, direction, and pattern
of deflection based on the changes in the observation point positions on the
north segment of the steel structure flyover and the south segment of the
concrete structure flyover when subjected to varying truck loads. This study
also aims to determine the feasibility of the bridge structure based on the
vertical deflection measured by the robotic total station against the allowable
deflection limits in accordance with the American Association of State Highway
and Transportation Officials Load and Resistance Factor Design Bridge Design
Specifications, 6th edition, 2012.
The
research stages begin with data preparation, which includes determining the
control point coordinates using four reference points (RTS and backsight),
verifying the distribution of monitoring points, and establishing the load
scheme. Monitoring is conducted using RTS on two segments of the flyover: the
northern segment (steel structure) with nine monitoring points and the southern
segment (concrete structure) with five monitoring points. The study includes
five staged loading simulations, starting from the no-load condition (0
trucks), followed by 2 trucks, 4 trucks, 6 trucks, up to the maximum load with
8 trucks having a total load of 202.98 tons (an average of 25 tons per truck).
After the maximum load, the load is reduced gradually back to the no-load
condition (0 trucks). The measurement data from 14 monitoring points, including
horizontal angles, vertical angles, distances, as well as easting, northing,
and elevation coordinates, are downloaded and processed using the GeoMoS
software. The results of each simulation are compared with the allowable
deflection limits according to the AASHTO LRFD Bridge Design Specifications
2012 edition to evaluate the feasibility of the flyover structure. The analysis
also includes the deflection pattern and direction at each monitoring point to
identify the structural behavior under varying loads, both in the northern and
southern segments.
The results of the study
show that the largest vertical deflection in the northern segment reached
-13.66 mm during the maximum load simulation (8 trucks), while in the southern
segment, it reached -13.8 mm. Each monitoring point is calculated to obtain the
pattern, direction, and magnitude of deflection under pre- and post-loading
conditions. The analysis of horizontal deflection indicates different shifts at
each point, with relatively consistent directional patterns at several points,
although variations occurred due to uneven load distribution. Visualizing the
deflection pattern also provides detailed insights into the distribution of
shifts across all monitoring points, both vertically and horizontally. All
deflection results are compared with the allowable deflection limits set by the
AASHTO LRFD Bridge Design Specifications 2012 edition, where the maximum
allowable deflection for the northern segment is 90.0625 mm and for the
southern segment is 44.0625 mm. The measured deflection results on both segments
of the flyover are below the allowable limits, thus the structure is declared
feasible and stable to withstand varying loads.
Kata Kunci : robotic total station, load test, vertical and horizontal deflection, Aloha Flyover, allowable deflection limits