Analisis Prediksi Probabilistik Diskrit untuk Meningkatkan Perencanaan Transportasi Barang
Ken Zabiy Muhammad Arief, Ir. I Gusti Bagus Budi Dharma, S.T., M.Eng., Ph.D., IPM., ASEAN Eng.
2024 | Tesis | S2 Teknik Industri
Industri transportasi barang di Jawa menghadapi peningkatan kompleksitas
yang didorong oleh faktor lingkungan dan fluktuasi harga bahan bakar.
Penggabungan transportasi di antara produsen yang berbagi pelanggan telah
meningkat, terutama di sektor produk ultra-fresh, di mana penjadwalan distribusi
yang tepat sangat penting untuk pengiriman hari berikutnya atau hari yang sama.
Reservasi kendaraan seringkali perlu dilakukan beberapa hari sebelumnya untuk
memastikan kapasitas dan organisasi yang efektif. Untuk mengatasi tantangan ini,
pengembangan alat pengambilan keputusan berbasis data di bawah ketidakpastian
sangat penting. Metode peramalan tradisional sering kali gagal menangkap
keseluruhan hasil yang mengarah pada masalah operasional. Probabilistic
forecasting, yang mengintegrasikan nilai interval dan probabilitas terkait,
menawarkan alternatif yang menjanjikan.
Penelitian ini mengusulkan pendekatan probabilistik kondisional diskret,
menggunakan conditional probability untuk mengintegrasikan distribusi
probabilitas dari berbagai dataset. Penelitian ini menggunakan dataset dari sektor
ultra-fresh, yang mencakup data permintaan dan ramalan. Exploratory Data
Analysis (EDA) mengungkapkan pola 7 hari yang signifikan. Data dibagi
berdasarkan hari, dan distribusi probabilitas dalam setiap kelompok dianalisis.
Diskretisasi data dengan binning digunakan untuk melakukan prediksi
menggunakan conditional probability. Pendekatan klasifikasi multiclass ordinal
juga dilakukan sebagai pembanding. Metode yang diusulkan dievaluasi terhadap
algoritma seperti KNN, Decision Tree, Gradient Boosting, Random Forest, dan
SVM, menggunakan metrik seperti Accuracy, Weighted Cohen Kappa, dan
Matthew's Correlation Coefficient.
Hasil menunjukkan bahwa metode Original Klien memiliki Root Mean
Squared Error (RMSE) rata-rata terendah sebesar 0.17875, yang menunjukkan
akurasi ramalan yang terbaik, sementara metode General Classifier mencapai
persentase Backorder rata-rata terendah sebesar 0.8975%, menyoroti efektivitasnya
dalam mengurangi backorder. Metode Conditional Probability menawarkan
pendekatan yang seimbang, meningkatkan baik akurasi ramalan maupun
pengurangan backorder. Penelitian ini menunjukkan efektivitas yang memberikan
keuntungan dibandingkan metode tradisional. Penelitian selanjutnya dapat
diarahkan pada penggabungan pola permintaan dinamis dan mencoba teknik
machine learning yang lebih maju. Sementara itu, tantangan seperti ketersediaan
data, akurasi ramalan, dan penyesuaian dengan lingkungan yang dinamis harus
diatasi untuk meningkatkan akurasi.
The freight transportation industry in Java is experiencing competition and
complexity due to environmental concerns and energy prices. This situation has led
to an increase in transport pooling among producers sharing customers, particularly
in the ultra-fresh products sector where precise distribution scheduling is essential
for next-day or same-day deliveries. However, despite the need for accurate
planning, vehicle reservations must often be made days in advance to ensure
sufficient capacity and effective organization. Traditional forecasting methods
frequently fail to capture the full range of possible outcomes. To address this, the
development of data-driven decision-making tools under uncertainty is vital.
Probabilistic forecasting, which integrates interval values and associated
probabilities, presents a promising alternative for enhancing forecasting accuracy.
This research introduces a discrete conditional probabilistic approach,
leveraging conditional probability to integrate probability distributions from
various datasets. The study utilizes a time series dataset from the ultra-fresh sector,
encompassing historical demand and existing forecasts. Exploratory Data Analysis
(EDA) was conducted, revealing a 7-day seasonality pattern. The dataset was then
segmented by day, and probability distributions within each group were analyzed.
Discrete histogram bins with associated probabilities were employed for prediction
purposes. To evaluate the performance of the proposed method, it was compared
against conventional algorithms such as KNN, Decision Tree, Gradient Boosting,
Random Forest, and SVM, using metrics including Accuracy, Weighted Cohen
Kappa, and Matthew's Correlation Coefficient.
The results demonstrated that the Client’s Original method achieved the
lowest average Root Mean Squared Error (RMSE) of 0.17875, indicating superior
forecast accuracy. However, the General Classifier method attained the lowest
average Backorder Percentage of 0.8975%, underscoring its effectiveness in
minimizing backorders. The Conditional Probability method provided a balanced
approach, improving both forecast accuracy and backorder reduction. This research
highlights the effectiveness of the proposed method, which successfully balances
accuracy and operational efficiency, offering a notable advantage over traditional
forecasting techniques. Future research should aim to incorporate dynamic demand
patterns, explore advanced machine learning techniques such as deep learning, and
develop a robust scenario generation model. Addressing challenges related to data
availability, forecasting accuracy, and adaptation to dynamic environments will be
crucial for enhancing forecasting precision and operational efficiency in the freight
transportation industry.
Kata Kunci : probabilistic prediction; data analysis; transportation planning