Screening Pulse Oximeter pada Uji Fungsi Pra-Kalibrasi Pulse Oximeter Jari dengan Analisis Response Time Menggunakan Machine Learning Model
Septia Khairunnisa, Dr. Indah Soesanti, S.T., M.T. ; Dr. Dyah Listyarifah, M.Sc.,D.Med.Sci. ; Hary Ernanto, A.Md. T.E.
2024 | Tesis | MAGISTER TEKNIK BIOMEDIS
Pengukuran waktu respons pulse oximeter dengan menggunakan simulator
SpO2 belum memiliki metode standar dan ambang batas yang tepat. Oleh karena
itu, diperlukan metode pengukuran alternatif untuk meminimalkan kesalahan dan
meningkatkan efisiensi kalibrasi pulse oximeter, terutama karena semakin
banyaknya variasi pulse oximeter yang beredar akibat pandemi COVID-19.
Penelitian ini bertujuan untuk mengukur waktu respons (Response Time, RT) dari
pulse oximeter jari dengan enam jenis pengkondisian berbeda guna menentukan
ambang batas RT untuk pengujian dan kalibrasi alat. Kami mengevaluasi waktu
respons dari 104 oksimeter denyut jari (22 jenis patient monitor, 20 jenis handheld,
dan 38 jenis fingertip) menggunakan enam metode pengkondisian saturasi dan
desaturasi dengan SpO2 simulator. Analisis kuantitatif dilakukan untuk menentukan
nilai ambang batas awal guna memudahkan pelabelan dataset. Selanjutnya, hasil
dari 104 dataset dianalisis menggunakan algoritma machine learning seperti
Logistic Regression, Linear Discriminant Analysis, SVMs, K-Nearest Neighbor
(KNN), Decision Trees, Random Forest, dan Neural Networks. Hasil klasifikasi
dengan model algoritma Neural Networks menunjukkan nilai akurasi, presisi,
recall, dan f1-score yang lebih baik dibandingkan model algoritma lainnya, dengan
nilai akurasi sebesar 87%, spesifisitas 91,8%, presisi 77,5%, recall 73,5%, dan f1-
score 72,3%.
A standardized method and proper threshold to measure pulse oximeter
response time using SpO2 simulator has not established. Therefore, alternative
measurement approaches are necessary to minimize errors and enhance the
efficiency of pulse oximeter calibration methods, particularly given the increasing
variety of pulse oximeter available as a result of the COVID-19 pandemic. The
purpose of this study is to measure the response time (RT) of a finger pulse oximeter
with 6 different types of conditioning to determine the RT threshold for device
testing and calibration. We evaluated the response time of 104 finger pulse
oximeters (22 patient monitor types, 20 handheld types, and 38 fingertip types)
using 6 saturation and desaturation conditioning methods with the SpO2 Simulator.
Quantitative analysis was used to determine baseline thresholds to facilitate
labeling of the data set. In addition, results from a total of 104 datasets were
analyzed using machine learning algorithms including; Logistic Regression, Linear
Discriminant Analysis, SVMs, K-Nearest Neighbor (KNN). Decision Trees,
Random Forest, and Neural Networks. The results of classification using machine
learning with the Neural Networks algorithm model produce better accuracy,
precision, recall and f1-score values than other algorithm models, with an accuracy
value of 87%, specificity 91.8%, precision 77.5%, recall 73.5% and f1-score 72.3%.
Kata Kunci : Pulse Oximeter, Kalibrasi, Response Time, Analisis Kuantitatif, Machine Learning