Rancang Bangun dan Kendali Stabilisasi Prilaku Tricopter Kemiringan Tunggal dengan Biaya Rendah
AHMAD JAELANI SIDIK, Dr. Fahmizal, S.T., M.Sc.
2024 | Tugas Akhir | D4 Teknologi Rekayasa Instrumentasi dan Kontrol
Penggunaan dan efektivitas unmanned aerial vehicle (UAV) telah mengalami kemajuan pesat, terutama di bidang penerbangan. UAV tricopter merupakan sistem non-linear yang tidak stabil, artinya sistem ini memiliki empat sinyal masukan yang mengendalikan enam derajat kebebasan gerak, yang merupakan sebuah tantangan. Penelitian ini bertujuan merancang robot terbang UAV model tricopter dengan membuat desain mekanik dan elektronik flight controller, serta merancang pengendali yang mampu menjaga attitude UAV tricopter.
Pada desain mekanik, digunakan konfigurasi Y dengan sudut antar lengan sebesar 120 derajat dengan konfigurasi single tilt-rotor. Sedangkan pada desain elektronik flight controller, digunakan IC ATmega 328-PU sebagai controller dan dilengkapi dengan sensor IMU GY88A. Pengendalian yang diterapkan pada attitude tricopter menggunakan kendali proportional-integral-derivative (PID).
The use and effectiveness of unmanned aerial vehicle (UAV) has progressed rapidly, especially in the field of aviation. The tricopter UAV is a non-linear unstable system, meaning it has four input signals controlling six degrees of freedom of motion, which is a challenge. This research aims to design a tricopter model UAV flying robot by making mechanical and electronic flight controller designs, and designing a controller that can maintain the attitude of the UAV tricopter.
In the mechanical design, a Y-configuration is used with an inter-arm angle of 120 degrees with a "single tilt-rotor" configuration. In the electronic design of the flight controller, the ATmega 328-PU IC is used as the controller and is equipped with a GY88A IMU sensor. The control applied to the tricopter attitude uses proportional-integral-derivative (PID) control.
The results of system identification in the roll axis movement using the transfer function method produce PID control parameters which will be the reference value in determining the control gain to be applied. Testing the tricopter attitude on the test bed rig resulted in gain parameters for roll axis movement are Kp = 2, 2, Ki = 0, 203, and Kd = 7; for pitch axis movement are Kp = 1, 8, Ki = 0, 203, and Kd = 6; and for yaw axis movement are Kp = 4, 4, Ki = 0, and Kd = 14. In addition, the implementation of PID control on the UAV tricopter attitude has been tested for robustness by adding noise. Outdoor flight tests with the implementation of PID control show that the system is able to maintain the stability of the UAV tricopter attitude with mean absolute error (MAE) values of 1,133 for attitude roll and 1,831 for attitude pitch.
Kata Kunci : Tricopter Tilt-Rotor, Flight Controller, Transfer Function, Kendali Attitude, PID