Laporkan Masalah

SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN MARKETING OFFICER BERPRESTASI DENGAN METODE PROMETHEE DAN PROFILE MATCHING (Kasus: BRI Katamso Yogyakarta)

RIPTO MUKTI WIBOWO, Adhistya Erna Permanasari, S.T., M.T., Ph.D;Indriana Hidayah, S.T., M.T.

2016 | Tesis | S2 Teknik Elektro

Bank Rakyat Indonesia (BRI) yang dikenal sebagai bank masyarakat Indonesia berhasil membukukan total income sebesar Rp 70,5 triliun, (hingga akhir September 2015) dan total kredit Rp 519 triliun tumbuh 11,8% dibandingkan periode yang sama tahun 2014. Peningkatan kredit terutama didorong pertumbuhan kredit mikro. Pencapaian prestasi tahun 2015 tidak lepas dari Marketing Officer (MO) BRI di Yogyakarta. Tiga wilayah di Indonesia yang menyerap Kredit Usaha Rakyat paling banyak yakni Sulawesi Selatan; Bali Nustra; Yogyakarta. BRI Katamso merupakan salah satu kantor cabang BRI di Kantor Wilayah Yogyakarta yang mendukung pencapaian tersebut. BRI Katamso terus memacu MO untuk mencapai target dan melampaui rata-rata untuk meningkatkan omzet perusahaan. Permasalahan yang ditemui yakni MO yang hanya berhasil pada beberapa periode saja. Jumlah MO yang banyak dan tersebar pada Kantor Cabang Pembantu, Unit, Teras BRI. Penilaian MO masih sederhana dengan mencari hasil penilaian dokumen manual yang menyita waktu, kurang efektif, tidak transparan dan tidak berdasarkan kompetensi yang ditetapkan perusahaan. Penelitian ini mengembangkan Sistem Pendukung Keputusan (SPK) yang dapat membantu decision maker dalam memilih MO secara obyektif dengan multikriteria. Kriteria penilaian MO berprestasi diantaranya: outstanding credit, non performance loan, jumlah pencapaian britama, pencapaian simpedes, giro, deposito, jumlah seluruh pencapaian, debitur, kreditur, pembentukan daftar hitam dan pemasukan daftar hitam. Pada penelitian ini SPK yang dibangun menggunakan metode Profile Matching dan Promethee dan selanjutnya dilakukan pengujian pada dua metode tersebut. Promethee menawarkan fungsi preferensi,net flow dalam proses penilaian ranking. Promethee membantu memecahkan permasalahan multikriteria dengan cara menentukan urutan (prioritas). Profile Matching memiliki kelebihan dalam perangkingan karena melakukan matching dengan menentukan gap, pembobotan dan menentukan core, secondary factor dan selanjutnya total akhir. Pada penelitian ini dilakukan pengujian blackbox dan akurasi. Pada proses pengujian akurasi sistem dengan menggunakan perbandingan decision maker, profile matching dan promethee, range tingkat kinerja SPK pada kasus ini 80-85%. Dari hasil pengujian manual dibandingkan dengan sistem dinyatakan valid. Promethee lebih baik dalam akurasi dibandingkan Profile Matching. Promethee mampu menampilkan ranking 1-10 yang tidak terlalu berbeda dari penilaian decision maker. Pada proses analisis waktu proses, penggunaan promethee membutuhkan 61,9 detik, lebih lama dibandingkan dengan Profile Matching yang hanya 57,8 detik. Penggunaan Promethee dalam SPK ini disarankan karena memiliki kelebihan dalam akurasi walaupun memiliki kelemahan dalam analisis waktu proses. Pada penelitian ini juga dilakukan evaluasi sistem dengan ISO dan Heuristik. Berdasarkan evaluasi dengan ISO dan heuristik, secara umum desain interface dan beberapa faktor efektivitas,efisiensi,kepuasan menghasilkan nilai rata-rata 3,75(dari skala 5) dan SPK dapat digunakan oleh pihak BRI Katamso namun masih ada beberapa hal yang perlu diperbaiki terutama dalam kemudahan penggunaan.

Bank Rakyat Indonesia (BRI), or also known as People's Bank of Indonesia, had recorded a total income of IDR 70.5 trillion and total loans disbursed of IDR 519 trillion in January until September 2015, in which there was a growth of 11.8% from the same previous period in 2014. The current increase of the loans was mainly driven by the growth of micro-credit. The 2015 achievement could not be separated from the Marketing Officer (MO) of BRI in Yogyakarta. Business credit, or its common name in Indonesian is "Kredit Usaha Rakyat", was mostly absorbed by these three regions: Southern Sulawesi (268.93 billion), Bali; NTT; NTB (216.02 billion), and Yogyakarta (203.34 billion). BRI Katamso was the one of those supporting branches of BRI in Yogyakarta Administrative Region that contribute directly to the achievement. BRI Katamso constantly encouraged its MO to achieve the target and also to surpass the average in order to increase the company's turnover. The problem was formulated that the success of MO had lasted only in certain periods. The amount of MOs was considered too large and they were spread into the company's branches and units. The assessments given by MOs were considered a time-consuming job because of the manual documents assessments, which were not effective, less in transparency, and not based on the competence standard assigned by the company. This research tried to develop a Decision Support System (DSS), which was able to help the decision makers to choose MOs objectively by using multi-criteria. A good MO could be assessed through the following criteria: outstanding credit, non-performance loan, Britama (General Savings Services) achievement, Simpedes (Savings for Suburban People) achievement, postgiro, deposits, total of all achievements, debtors, creditors, the establishment of blacklist, and the inclusion in the blacklist. In this research, DSS was built and tested using Profile Matching and Promethee. Promethee offers a preference function and a net flow process in ranking assessment. Promethee helps multi-criteria problem solving by determining priorities. Profile Matching has an advantage in the ranking assessment by determining the gap, weight, core, secondary factors, and the final sum in the matching process. This research was tested using black box and accuracy tests. In the accuracy tests using decision makers comparison, profile matching, and Promethee, the performance level of DSS was determined in the range of 80-85%. Manual tests were conducted to show whether the system could be stated as a valid system. The result showed that Promethee was better in accuracy than Profile Matching. Promethee was able to show the 1st-10th ranks, which was not distinctive than the decision makers assessments. In the analysis process, Promethee took 61.9 seconds to finish, which was longer than Profile Matching that took 57.8 seconds. The usage of Profile Matching is suggested for its high accuracy than Promethee but weakness in efficiency. This research also conducted an evaluation using ISO and heuristic technique. Based on ISO and heuristic tests, the user interface and certain factors, such as effectivity, efficiency, and satisfaction generating an average value of 3.75 (on a scale of 5) and the DSS could be used by people in charge in the company. However, there were a disadvantage in usability that required to be fixed in a further research.

Kata Kunci : DSS, Marketing Officer, Promethee, Profile Matching, BRI Katamso

  1. S2-2016-370745-abstract.pdf  
  2. S2-2016-370745-bibliography.pdf  
  3. S2-2016-370745-tableofcontent.pdf  
  4. S2-2016-370745-title.pdf