Laporkan Masalah

Penerapan fungsi Bessel untuk perpindahan panas dan pin melingkar

SUGIYANTO, Dr. Widodo, MS

2007 | Tesis | S2 Matematika

Tesis ini akan membicarakan alasan sangat pentingnya Persamaan Diferensial (PD) Bessel dalam bidang teknik. Penerapan PD Bessel pada bidang teknik antara lain: getaran (vibrasi), medan elektrostatik, rambatan (konduksi) panas. Karena itu PD Bessel sangat penting dalam bidang teknik. Solusi PD Besel disebut fungsi Bessel, yang mana nantinya dapat untuk menganalisa perpinndahan kalor pada pin melingkar. Tesis ini juga membicarakan teori-teori pendukung penyelesaian PD Bessel dan PD Bessel yang Dimodifikasi. Tesis ini juga membicarakan penyelesaian PD Bessel dan PD Bessel yang Dimodifikasi. Solusi dari PD Bessel: x2 y''+xy'+(x2 - v2 ) y = 0, untuk setiap nilai v, adalah Rumus , di mana rumus dan rumus , bila v = n bilangan bulat maka Y (x) lim Y (x) n v®n v = , dan 1 C , 2 C merupakan konstantakonstanta, sedangkan solusi PD Bessel yang dimodifikasi: x2 y''+xy'-(x 2 + v2 ) y = 0 untuk setiap nilai v, adalah (rumus), di mana rumus , bila v = n bilangan bulat maka K (x) lim K (x) n v®n v = , dan 1 c , 2 c merupakan konstanta -konstanta. Tesis ini juga membicarakan penerapan PD Bessel untuk menganalisa perpindahan panas pada pin melingkar. Disini akan dicoba mencari energi/kalor yang dibuang ke lingkungan melalui pin melingkar.

This paper talk abaut important Bessel Differensial Equation and Modification Bessel Equation in engineering sector. Examples aplication of Bessel differensial equation in engineering sector are vibration, electrostatic field, head conduction (heat transfer). Because its Bessel differensial equation is very important in engineering sector. The solution Bessel differential equation is called Bessel Function and the solution modification Bessel differential equation is called Modification Bessel Function. This paper also talk about proponent theories solution Bessel differential equation, modification Bessel function and heat transfer. This paper also talk about solution Bessel differential equation and solution modification Bessel equation. The Bessel differential equation have the form of x2 y''+xy'+(x2 - v2 ) y = 0, with v constant, that it have salution formula with formula and formula is integer, then Y (x) lim Y (x) n v®n v = , and 1 C , 2 C constants. The modification Bessel differential equation have the form of x2 y''+xy'-(x2 + v 2 ) y = 0, with v constant, that it have salution formula and formula is integer, then K (x) lim K (x) n v®n v = , and 1 c , 2 c constants. This paper also talk about aplication of Bessel function for analizing heat transfer in a circular fin. In this paper will be tried finding lost energy.

Kata Kunci : Persamaan Diferensial,Bessel,Perpindahan Panas, Bessel Differensial Equation, Modification Bessel Differensial Equation, Heat Transfer


    Tidak tersedia file untuk ditampilkan ke publik.