Pemodelan Decision Support System Pendugaan Status Kalium Tebu (Saccharum officinarum L.) Bongkar Ratoon Berbasis Unmanned Aerial Vehicle Multispektral
Azhari Muklis, Eka Tarwaca Susila Putra, S.P., M.P., Ph.D.; Nur’Ainun Harlin Jennie Pulungan, S.Si., M.Sc., Ph.D.
2025 | Tesis | S2 Agronomi
Kebutuhan gula semakin meningkat seiring bertambahnya jumlah penduduk,
pada tahun 2018 hingga 2022 produksi gula mengalami peningkatan namun tidak
dapat mencukupi kebutuhan gula nasional. Diperlukan upaya untuk meningkatkan
produksi gula nasional salah satunya yaitu melalui manajemen pemupukan presisi terutama
untuk hara Kalium (K). Penelitian ini bertujuan untuk mengembangkan model Decision Support System (DSS) sebagai
penduga serapan dan dosis rekomendasi pupuk K tanaman tebu yang presisi
berbasis foto udara multispektral UAV. Penelitian lapangan telah dilaksanakan
di Sleman, D.I. Yogyakartaa, Sidoarjo, Jawa Timur dan Lampung Utara, Lampung
pada Oktober 2023 - Desember 2024. Percobaan lapangan di setiap lokasi disusun menggunakan
rancangan lingkungan acak kelompok lengkap (RAKL) dengan 5 perlakuan yaitu 100%
pupuk NPK dosis 850 kg/ha
(P1), 80% (680 kg/ha) dosis pupuk NPK (P2), 60% (510 kg/ha) dosis pupuk NPK
(P3), 40% (340 kg/ha) dosis pupuk NPK (P4) dan 20% (170 kg/ha) dosis pupuk NPK
(P5) dan 3 blok sebagai ulangan. Data yang diperoleh selanjutnya dianalisis
menggunakan algoritma machine learning
berbasis Random Forest
(RF) dan Stepwise Multiple Linear (SML) MINITAB untuk menghasilkan model
penduga serapan dan dosis rekomendasi pupuk K tanaman tebu. Hasil penelitian memberikan
informasi bahwa model penduga serapan dan dosis rekomendasi pupuk K tanaman
tebu yang dibangun menggunakan algoritma RF tingkat akurasinya lebih tinggi
jika dibandingkan dengan model penduga yang dihasilkan oleh algoritma SML
MINITAB, jika jumlah data set yang
dipergunakan sedikit, pada penelitian ini sebanyak 90 data set. Pendekatan algoritma RF meghasilkan model penduga serapan
K tanaman tebu dengan nilai R2 sebesar 0,50 (50%) sedangkan SML
hanya mampu menghasilkan nilai 0,25 (25%). Model penduga serapan K tanaman tebu
hasil algoritma RF mampu mengontrol serapan K aktual tanaman tebu sebesar 55,9%
sedangkan model yang dikembangkan menggunakan SML hanya mampu mengendalikan serapan K aktual
tanaman tebu sebesar 24,8%. Model penduga serapan K tanaman tebu yang
dihasilkan yaitu: 848 –
1182 NDVI + 966 NDRE + 504 SAVI – 22,8 SR. Sedangkan model penduga dosis rekomendasi pupuk
K tanaman tebu yaitu: –
299,81 + 1165,33 NDVI – 952,38 NDRE – 496,89 SAVI + 22,49 SR.
The need for sugar is increasing along
with the increasing population, in 2018 to 2022 sugar production has increased
but cannot meet national sugar needs. Efforts are needed to increase national
sugar production, one of which is through precision fertilization management,
especially for Potassium (K) nutrients. This study aims to develop a Decision
Support System (DSS) model as an estimate of absorption and recommended doses
of K fertilizer for sugarcane plants that are precise based on UAV multispectral
aerial photography. Field research has been carried out in Sleman, D.I.
Yogyakarta, Sidoarjo, East Java and North Lampung, Lampung in October 2023 -
December 2024. Field trials at each location were arranged using a complete
randomized block design (RAKL) with 5 treatments, namely 100% NPK fertilizer
dose of 850 kg/ha (P1), 80% (680 kg/ha) NPK fertilizer dose (P2), 60% (510
kg/ha) NPK fertilizer dose (P3), 40% (340 kg/ha) NPK fertilizer dose (P4) and
20% (170 kg/ha) NPK fertilizer dose (P5) and 3 blocks as replications. The data
obtained were then analyzed using a machine learning algorithm based on Random
Forest (RF) and Stepwise Multiple Linear (SML) MINITAB to produce a model to
estimate the absorption and recommended dose of K fertilizer for sugarcane plants.
The results of the study provide information that the sugarcane plant K
absorption and recommended dose estimation model built using the RF algorithm
has a higher level of accuracy when compared to the estimation model produced
by the MINITAB SML algorithm, if the number of data sets used is small, in this
study there were 90 data sets. The RF algorithm approach produces a sugarcane
plant K absorption estimation model with an R2 value of 0.50 (50%) while SML is
only able to produce a value of 0.25 (25%). The sugarcane plant K absorption
estimation model resulting from the RF algorithm is able to control the actual
K absorption of sugarcane plants by 55.9% while the model developed using SML
is only able to control the actual K absorption of sugarcane plants by 24.8%.
The sugarcane plant K absorption estimation model produced is: 848 - 1182 NDVI
+ 966 NDRE + 504 SAVI - 22.8 SR. Meanwhile, the model for estimating the
recommended dose of K fertilizer for sugarcane plants is: – 299.81 + 1165.33
NDVI – 952.38 NDRE – 496.89 SAVI + 22.49 SR.
Kata Kunci : Kata kunci: kalium, PF, UAV, multispektral, DSS, indeks, prediksi, RF, SML; Keywords: potassium, PF, UAV, multispectral, DSS, index, prediction, RF, SML