Model Estimasi Sintesis Protein Mikroba Berdasarkan Derivat Purin Urin Kambing Peranakan Ettawa dan Sapera serta Aplikasinya pada Proteksi Protein Pakan
Catur Suci Purwati, Dr. Ir. Chusnul Hanim, M.Si., IPM., ASEAN Eng; Prof. Dr. Ir. Lies Mira Yusiati, SU., IPU., ASEAN Eng; Prof. Dr. Ir. Budi Prasetyo Widyobroto, DESS., DEA., IPU., ASEAN Eng.
2024 | Disertasi | S3 Ilmu Peternakan
Derivat purin (DP) yang
berada di dalam urin merupakan hasil metabolisme basa purin komponen asam
nukleat dalam tubuh ternak. Metabolisme adalah proses biokimiawi dibantu oleh
enzim. Sintesis enzim dipengaruhi oleh DNA yang kemungkinan berbeda pada setiap
bangsa ternak. Tujuan penelitian tahap pertama mendapatkan ekskresi DP endogen
kambing PE dan Sapera, tahap kedua kajian metode spot sampling dilakukan
untuk mendapatkan persamaan korelasi antara kadar DP: kreatinin urin spot
sampling dengan ekskresi DP total kambing PE dan Sapera, dan tahap ketiga
penggunaan tepung kayu manis sebagai agen proteksi protein terhadap kecernaan
nutrien dan sintesis protein mikroba serta balance nitrogen menggunakan
metode spot sampling pada kambing PE dan Sapera. Penelitian ini
mengunakan dua jenis kambing yaitu kambing PE dan Sapera jantan, umur antara
8-12 bulan. Pakan yang diberikan adalah hijauan rumput pakchong dan wheat
bran pollard, sedangkan tahap ketiga
mengunakan pakan 60% rumput gajah 30%, wheat bran pollard 10% bungkil
kedelai di proteksi dengan tepung kulit kayu manis dengan level 0, 30, 60 g/kg
BK pakan. Penelitian tahap pertama dibagi menjadi dua yaitu periode penentuan
ekskresi DP endogen dilakukakan adaptasi 14 hari, kemudian ternak dipuasakan
sampai benda keton teramati. Selanjutnya periode saat ternak diberi pakan ad
libitum. Adaptasi dilakukan selama 14 hari, koleksi selama 7 hari. Tahap
kedua koleksi urin spot sampling diambil secara periodik dengan interval
waktu 3 jam dalam sehari, koleksi urin selama 7 hari. Tahap ketiga perlakuan
proteksi protein pakan dengan kulit kayu manis, sebagai aplikasi metode spot
sampling untuk mengestimasikan jumlah sintesis protein mikroba kambing PE
dan Sapera. Sampel pakan, sisa pakan, feses, Untuk menentukan komposisi kimia
menentukan kandungan bahan kering (BK), bahan organik (BO), protein kasar (PK),
serat kasar (SK) dan lemak kasar (LK) yang dilakukan dengan metode analisis
proksimat digunakan untuk menentukan konsumsi dan kecernaan nutrien, sedangkan
sampel urin dilakukan analisis kadar derivat purin berupa alantoin, asam urat,
xantin dan hipoxantin dan kreatinin pada tahap pertama, kedua dan ketiga, untuk
menentukan ekskresi derivat purin. Selanjutnya data ekskresi DP digunakan untuk
menentukan estimasi sintesis protein mikroba dan balance nitrogen. Data yang
sudah diperoleh pada penelitian tahap 1 dan 2 menggunakan rancangan percobaan Independent Student t-test untuk membedakan DP bangsa kambing PE dan Sapera,
sedangkan penelitian tahap 3 dilakukan uji dengan rancangan acak lengkap (pola
faktorial) kemudian untuk mengetahui perbedaan antar nilai rerata dilakukan uji
lanjut Duncan atau DMRT (Duncan's
Multiple Range Test). Hasil penelitian tahap
pertama ekskresi DP endogen pada pada kambing PE 0,039 mmol/W0,75/hari
sehingga didapatkan persamaan Y = 0,84X + (0,039 W0,75 e-0,25X)
sedangkan pada kambing Sapera 0,053 mmol/ W0,75/hari sehingga
dihasilkan persamaan Y = 0,84X + (0,053 W0,75 e-0,25X)
dengan Y merupakan ekskresi DP, X adalah DP terabsorbsi, W0,75 berat
badan metabolik, sedangkan e-0,25X
merupakan logaritma alam. Konsumsi dan kecernaan nutrien pada saat ternak
diberi pakan adlibitum hasilnya tidak berbeda nyata (P>0,05),
perbedaan bangsa kambing PE dan Sapera
tidak berpengaruh terhadap kadar alantoin, xantin hipoxantin dan DP, serta
ekskresi alantoin namun pada kadar asam urat, kambing PE lebih tinggi dari
kambing Sapera, sedangkan ekskresi asam urat, xantin – hipoxantin dan DP
kambing Sapera lebih tinggi dari PE.
Berdasarkan hasil penelitian tahap dua diperoleh korelasi spot sampling terkuat kambing PE pada waktu pengambilan spot sampling terdapat pada
rentang waktu 11.00 sampai 14.00 dengan R2= 0,9735 dengan persamaan regeresi linier Y = 1,0178X + 2,1201. Waktu antara lain 3 sampai
6 jam
setelah pemberian makan pagi. Korelasi spot
sampling yang paling kuat pada kambing Sapera yaitu rentang waktu pada pukul
02.00 hingga 05.00 waktu tersebut 11 hingga 14 jam setelah pemberian pakan sore
dengan R2= 0,8248, dengan persamaan regresi linier Y = 3,5122X +
1,9378. Hasil penelitian tahap ketiga menunjukkan bahwa perbedaan bangsa kambing PE dan
Sapera serta penambahan level kulit kayu manis yang berbeda tidak berpengaruh
nyata (P>0,05) terhadap konsumsi dan
kecernaan nutrien. Pada kadar alantoin dan DP tidak berpengaruh nyata terhadap
bangsa Kambing PE dan Sapera serta pada penambahan level kayu manis sampai 60
g/kg BK pakan. Namun penambahan kayu manis dapat meningkatkan kadar asam urat,
dan xantin hipoxantin. Kadar asam urat dan xantin hipoxantin tertinggi pada
kambing PE dengan penambahan level kayu manis 30 g/kg BK pakan. Ekskresi DP
kambing PE dan Sapera yang diberikan level kayu manis sampai 60 g/kg BK pakan
tidak berpengaruh terhadap ekskresi xantin-hipoxantin baik sebelum dan sesudah nyatakan
dalam BBM, namun penambahan kayu manis level
30 dan 60 g/kg BK dapat menurunkan ekskresi alantoin, asam urat, dan DP
dibandingkan dengan kontrol (0 g/kg BK). Hasil perhitungan antara EMNS, DOMR,
BOT, EMNS/DOMR dan balance nitrogen pada kambing PE dan Sapera yang
diberikan pakan tepung kayu manis menunjukkan perbedaan yang tidak nyata. Berdasarkan hasil penelitian dapat disimpulkan
bahwa terdapat perbedaan model estimasi sintesis protein mikroba rumen
berdasarkan ekskresi DP pada urin kambing PE dan Sapera, serta penggunaan kayu
manis untuk proteksi protein pakan dapat menurunkan ekskresi derivat purin,
namun tidak berpengaruh negatif terhadap sintesis protein mikroba rumen kambing
PE dan Sapera. Persamaan estimasi sintesis protein mikroba berbeda antar
bangsa, terbukti bahwa antara kambing PE dan Sapera didapatkan persamaan
estimasi yang berbeda. Persamaan estimasi sintesis protein mikroba berbeda antar
bangsa, terbukti bahwa antara kambing PE dan Sapera didapatkan persamaan
estimasi yang berbeda. Persamaan tersebut dapat digunakan untuk mengkaji aspek
nutrisi secara luas dan mengkaji efisiensi penggunaan pakan serta standar
penyusunan ransum pada ternak ruminansia.
Urinary
purine derivatives originate from the metabolism of nucleic acid-derived purine bases in
livestock. This biochemical process is enzyme-mediated, with enzyme synthesis
influenced by DNA and potentially varying among livestock breeds. The first
stage of this study aimed to determine endogenous PD excretion in Ettawa and Saanen crossbred goats. The second stage investigated
the spot sampling method to correlate the PD:creatinine ratio in spot urine
with total PD excretion in these goats. The third stage examined the use of
cinnamon powder as a protein protection agent for nutrient digestibility,
microbial protein synthesis, and nitrogen balance using the spot sampling
method in Ettawa and
Saanen crossbred goats. This study examined two goat breeds: male Ettawa crossbreed and Saanen crossbreed, aged 8 to 12 months. Their diet
consisted of pakchong grass and wheat bran powder. In the third phase, the feed
composition was 60% elephant grass, 30% wheat bran pollard, and 10% soybean
meal, with cinnamon bark powder added at 0, 30, and 60 g/kg feed dry matter.
This study was conducted in three stages. The first stage, divided into two
parts, determined endogenous PD excretion through a 14-day adaptation period,
followed by fasting until ketone bodies appeared. The subjects then received
unlimited feed for a 14-day adaptation and 7-day collection period. The second
stage involved collecting urine samples every 3 h for 7 days. The third stage
applied the spot sampling method to assess microbial protein synthesis in both
goat breeds using cinnamon bark for feed protein protection. Feed, residue, and
feces were analyzed for chemical composition, including dry matter (DM),
organic matter (OM), crude protein (CP), crude fiber (CF), and crude fat (CF)
using proximate analysis to evaluate nutrient intake and digestibility. Urine
samples from all stages were examined for purine derivatives (allantoin, uric
acid, xanthine, hypoxanthine, and creatinine) to determine excretion levels.
These data were then used to estimate microbial protein synthesis and nitrogen
balance. The data obtained from phases I and II of the study utilized an
independent Student's t-test design to differentiate the purine derivatives of
the Ettawa
crossbreed and Saanen crossbreed goats, whereas phase III of the study employed
a completely randomized design (factorial pattern). To determine the
differences among the mean values, Duncan's Multiple Range Test (DMRT) was
conducted. The results of the first phase of research on the excretion of
endogenous PD in crossbred Ettawa goats demonstrated 0.039 mmol/W0,75/day, leading to the equation Y = 0,84X + (0,039 W0,75 e-0,25X).
Conversely, in crossbred Saanen Ettawa
goats, excretion was 0.053 mmol/W0,75/day, resulting in the equation Y = 0,84X
+ (0,053 W0,75 e-0,25X). The consumption and digestion of
nutrients when livestock were provided ad libitum exhibited no significant
difference (P > 0.05). The differences between Ettawa and Saanen crossbred goats did not affect the levels of
allantoin, xanthine, hypoxanthine, PD, or allantoin excretion. However, Ettawa crossbred goats exhibited higher uric acid levels than Saanen crossbred
goats, whereas the excretion of uric acid, xanthine, hypoxanthine, and PD was
higher in Saanen crossbred goats than in Ettawa crossbred goats. Based on the results of the second phase of the
research, the strongest correlation for spot sampling of Ettawa breed goats occurred during the sampling period from 11:00 AM to 2:00
PM, with R2 = 0.9735 and the linear regression equation Y = 1.0178X
+ 2.1201. This time is approximately 3 to 6 h after the morning feeding. In
contrast, for Sanen breed goats, the strongest correlation for spot sampling
was observed in the time range from 2:00 AM to 5:00 AM, which is 11–14 h after
evening feeding, with R2 = 0.8248 and the linear regression equation
Y = 3.5122X + 1.9378. The results of the third phase of the study indicated
that the differences between Ettawa
crossbreed goats and Sanen Ettawa
crossbreed goats, as well as the addition of different levels of cinnamon bark,
did not have a significant effect (P>0.05) on nutrient consumption and
digestibility. The levels of allantoin and PD did not have a significant effect
on Ettawa
crossbred goats and Sanen crossbred goats, as well as on the addition of
cinnamon up to 60 g/kg of feed dry matter. However, the addition of cinnamon
increased the levels of uric acid and hypoxanthine. The highest levels of uric
acid and hypoxanthine xanthine were observed in Ettawa crossbred goats fed 30 g/kg cinnamon. The excretion of
goat DP PE and Sapera-administered cinnamon levels of up to 60 g/kg of feed dry
matter did not affect the excretion of xanthine-hypoxanthine either before or
after being stated in dry matter. However, the addition of cinnamon at levels
of 30 and 60 g/kg of feed dry matter reduced the excretion of allantoin, uric
acid, and DP compared to the control (0 g/kg of feed dry matter). The results
of the calculations between EMNS, DOMR, BOT, EMNS/DOMR, and nitrogen balance in
Ettawa
crossbreed goats and Sanen crossbreed goats fed cinnamon powder showed no
significant differences (P > 0.05). Based on these findings, Ettawa crossbreed goats and Sanen crossbreed goats do not differ in microbial
synthesis efficiency, because utilization of the same feed results in microbial
activity in synthesizing microbial protein with similar capabilities. PD
excretion is positively correlated with microbial protein synthesis and
enzymes. Enzyme synthesis is influenced by DNA, which may vary among different
livestock breeds. The objective of the first stage of the research was to
determine the endogenous PD excretion of Ettawa crossbred and Saanen crossbred goats. The second stage involved an
investigation of the spot sampling method to establish a correlation between
the PD: creatinine ratio in spot urine sampling and the total PD excretion of Ettawa and Saanen crossbreed goats. The third stage focuses on the utilization
of cinnamon powder as a protein protection agent for nutrient digestibility and
microbial protein synthesis, as well as nitrogen balance, using the spot
sampling method on Ettawa and
Saanen crossbreed goats. This research involved two types of goats,
specifically male Ettawa crossbreed and Saanen crossbreed goats, aged between 8 and 12 months.
The feed provided comprised pakchong grass and wheat bran pollard, while the
third stage utilized a feed composition of 60% elephant grass, 30% wheat bran
pollard, and 10% soybean meal, supplemented with cinnamon bark powder at levels
of 0, 30, and 60 g/kg of feed dry matter. The first stage of the research is
divided into two parts: the period for determining endogenous PD excretion
involves a 14-day adaptation, followed by fasting the livestock until ketone
bodies are observed. Subsequently, the livestock was provided with ad libitum
feed, with adaptation conducted over 14 days and collection over 7 days. The
second stage involves spot sampling urine collected periodically at 3-hour
intervals throughout the day, with urine collection lasting 7 days. The third
stage involves the treatment of feed protein protection with cinnamon bark as
an application of the spot sampling method to estimate the quantity of
microbial protein synthesis in Ettawa and Saanen crossbred goats. Feed samples, feed residues,
and feces were utilized to determine the chemical composition, including the
content of dry matter (DM), organic matter (OM), crude protein (CP), crude
fiber (CF), and crude fat (CF), which were analyzed using proximate analysis
methods to assess nutrient consumption and digestibility. Concurrently, urine
samples undergo analysis for purine derivatives, such as allantoin, uric acid,
xanthine, hypoxanthine, and creatinine, in the first, second, and third stages
to determine the excretion of purine derivatives. Furthermore, the excretion
data of purine derivatives were utilized to estimate microbial protein
synthesis and nitrogen balance. The data obtained from phases I and II of the
research employed an independent Student’s t-test design to differentiate the
purine derivatives of the Ettawa
crossbreed and Saanen crossbreed goats, whereas phase III of the research
utilized a completely randomized design (factorial pattern). To determine the
differences among the mean values, Duncan's Multiple Range Test (DMRT) was
conducted. The results of the initial phase of research on the excretion of
endogenous PD in crossbred Ettawa goats demonstrated 0.039 mmol/W0,75/day, yielding the
equation Y = 0,84X + (0,039 W0,75 e-0,25X). In contrast,
crossbred Saanen Ettawa goats
exhibited excretion of 0.053 mmol/W0,75/day, resulting in the equation Y =
0,84X + (0,053 W0,75 e-0,25X). The consumption and
digestion of nutrients when livestock were provided ad libitum showed no
statistically significant difference (P > 0.05). Variations between ETTAWA
crossbred and Saanen crossbred goats did not significantly influence the levels
of allantoin, xanthine, hypoxanthine, PD, or allantoin excretion. However,
regarding uric acid levels, Ettawa
crossbred goats exhibited higher concentrations than Saanen crossbreed goats,
while the excretion of uric acid, xanthine, hypoxanthine, and PD was greater in
Saanen crossbreed goats than in Ettawa crossbreed goats. The second phase of the study revealed that the
strongest correlation for spot sampling of Ettawa breed goats occurred during the sampling period from 11:00 AM to 2:00
PM, with R2 = 0.9735 and the linear regression equation Y = 1.0178X
+ 2.1201. This time frame is approximately 3 to 6 h post-morning feeding. For
Sanen breed goats, the strongest correlation for spot sampling was observed in
the time range from 2:00 AM to 5:00 AM, which is 11 to 14 h after the evening
feeding, with R2 = 0.8248 and the linear regression equation Y =
3.5122X + 1.9378. The findings of the third phase of the study indicated that
the differences between Ettawa
crossbreed goats and Sanen Ettawa
crossbreed goats, as well as the supplementation of varying levels of cinnamon
bark, did not exert a statistically significant effect (P>0.05) on nutrient
consumption and digestibility. The levels of allantoin and PD did not exhibit a
significant effect on Ettawa
crossbred goats and Sanen crossbred goats, nor did the addition of cinnamon up
to 60 g/kg of feed dry matter. However, the addition of cinnamon increased the
levels of uric acid and hypoxanthine. The highest levels of uric acid and
hypoxanthine xanthine were observed in Ettawa crossbreed goats with the addition of 30 g/kg cinnamon in the feed. The
excretion of DP in Ettawa
crossbreed and Sanen crossbreed goats administered cinnamon levels of up to 60
g/kg of feed dry matter did not affect the excretion of xanthine-hypoxanthine,
both before and after being stated in dry matter. However, the addition of
cinnamon at levels of 30 and 60 g/kg of feed dry matter reduced the excretion
of allantoin, uric acid, and DP compared to the control (0 g/kg of feed dry
matter). Based on the research
results, it can be concluded that there are differences in the estimation
models of rumen microbial protein synthesis based on the excretion of DP in the
urine of PE and Sapera goats, and the use of cinnamon for feed protein
protection can reduce the excretion of purine derivatives, but does not
negatively affect the synthesis of rumen microbial protein in PE and Sapera
goats.
Kata Kunci : Ekskresi derivat purin endogen, Kambing PE, Kambing Sapera, Kayu manis, Metode spot sampling, Proteksi protein