STUDI NUMERIK DAN EKSPERIMENTAL PENGARUH LAPISAN GFRP 2/3 BENTANG TERHADAP PERILAKU LENTUR BETON
HERTANTYA MUHAMMAD AULIASAKTYA, Ir. Suprapto Siswosukarto, Ph.D., IPM.
2024 | Skripsi | TEKNIK SIPIL
Dalam penelitian ini digunakan tiga benda uji balok beton berukuran 10
cm x 10 cm x 50 cm yang terbagi menjadi satu buah benda uji control dan dua
benda uji terlapisi GFRP. GFRP dipasangkan dengan arah serat 0? atau searah
dengan panjang balok beton. Simulasi numerik dilakukan dengan bantuan software
ABAQUS. Pemodelan balok beton didefinisikan sebagai elemen continuum shell.
Parameter material beton mengikuti dari hasil uji eksperimental.
Hasil pengujian
menunjukkan bahwa perkuatan GFRP 2/3 bentang pada balok beton dapat
meningkatkan kekuatan lentur beton sebesar 51% untuk satu lapis GFRP, 98% untuk
dua lapis GFRP. Hasil simulasi numerik menunjukkan perbedaan nilai kekuatan
lentur beton dengan hasil uji eksperimental sebesar 5.8% untuk beton kontrol,
4.9% untuk beton dengan satu lapis GFRP dan 7.4% untuk beton dengan dua lapis
GFRP. Hasil simulasi numerik menunjukkan perbedaan nilai beban maksimum beton
dengan hasil uji eksperimental sebesar berturut-turut 0.9%; 2.1%; 4.54% untuk
beton kontrol, beton dengan satu lapis GFRP, dan beton dengan dua lapis GFRP.
Concrete is a common material in the construction
industry because it is easily available on the market, economical, and has many
applications in various types of structures. Demand for concrete is expected to
increase by 12%–23% in 2050. One of the weaknesses of this material is its
brittleness so that it is susceptible to the formation and spread of cracks,
and has low tensile, strain and energy absorption capacities. Fiber Reinforced
Polymer (FRP) is one of the main solutions for strengthening because it is a
non-corrosive material that can replace traditional steel reinforcement in RC
structures, overcome overload due to changes in function, changes in standards,
damage to structural elements, and overcome material weakness. FRP is a
composite and anisotropic material with fiber content embedded in a polymer
matrix. Other advantages of FRP lie in its high strength-to-weight ratio,
non-conductivity, electromagnetic neutrality, high tensile strength, light
weight, and high strength-to-weight and stiffness-to-weight ratios. One of the
most popular types of FRP reinforcing bars is Glass Fiber Reinforced Polymer (GFRP)
because of its abundance and relatively low cost. This research was conducted
to examine the effect of GFRP layers on concrete flexural behavior such as
ductility, stiffness in the form of flexural capacity, cracking, load-bearing
strength and shear behavior, both experimentally and by numerical simulation.
In this research, three concrete beam specimens measuring
10 cm x 10 cm x 50 cm were used, divided into one control specimen and two
GFRP-coated specimens. GFRP is installed with a fiber direction of 0? or in the
same direction as the length of the concrete block. Numerical simulations were
carried out with the help of ABAQUS software. Concrete beam modeling is defined
as a continuum shell element. The concrete material parameters follow from the
experimental test results.
Test results show that 2/3 span GFRP reinforcement in
concrete beams can increase the flexural strength of concrete by 51% for one
layer of GFRP, 98% for two layers of GFRP. Numerical simulation results show
that the difference in flexural strength values of concrete with experimental
test results is 5.8% for control concrete, 4.9% for concrete with one layer of
GFRP and 7.4% for concrete with two layers of GFRP. Numerical simulation
results show that the difference between the maximum concrete load value and
the experimental test results is 0.9%, respectively; 2.1%; 4.54% for control
concrete, concrete with one layer of GFRP, and concrete with two layers of
GFRP.
Kata Kunci : Kuat Lentur, Balok Beton, GFRP, Simulasi Numerik, ABAQUS