Stock Price Prediction Using HMM-LSTM Method
Leo Harnadi Marlin, Faizal Makhrus, S.Kom., M.Sc., Ph.D
2024 | Skripsi | ILMU KOMPUTER
Pasar saham merupakan komponen penting dalam perekonomian
suatu negara. Pedagang saham perlu memprediksi tren pasar saham agar
dapat mengambil keputusan yang tepat untuk sahamnya, seperti menjual atau
membelinya. Namun, pasar saham pada dasarnya bergejolak dan sulit untuk
diprediksi.
Ada banyak metode yang dapat digunakan untuk memprediksi
pasar saham, seperti penggunaan modular neural network, sentiment analysis,
dan convolutional neural network. Dari metode-metode tersebut, penelitian ini
mengeksplorasi HMM dan LSTM, karena keduanya cocok untuk melakukan prediksi harga saham.
Beberapa model diciptakan untuk memprediksi harga pasar saham, di antaranya adalah model HMM-LSTM dengan jumlah HMM hidden states yang berbeda, model LSTM sebagai pembanding, dan varian
BLSTM. Hyperparameter model ini juga dioptimalkan selama pelatihan. Setelah
dievaluasi dengan RMSE, MAPE, dan MAE, ditemukan bahwa model HMM-LSTM dengan 4 hidden states lebih baik dibanding dengan model standar dan
BLSTM. Secara khusus, untuk RMSE dan MAE, kinerjanya masing-masing 0,08% -
0,74?n 0,08% - 0,25% lebih baik dibandingkan dengan model LSTM standar.
Namun, model HMM-LSTM dengan 3 nomor status tersembunyi memiliki kinerja lebih
buruk dibandingkan model standar dan BLSTM. Jika dibandingkan dengan model
LSTM, kinerjanya masing-masing 0,03% - 0,31%, 1,17% - 5,48%, dan 1,27% - 3,58%
lebih buruk untuk MAPE, RMSE, dan MAE.
The stock market is a vital component of a country’s economy.
Stock traders need to predict trends in stock market behavior in order to make
the correct decisions for their stocks, such as selling or buying it. However,
stock markets are volatile by nature and it is challenging to predict them.
There are many methods which can be used to potentially
predict the stock market, such as using modular neural network, sentiment
analysis, convolutional neural network, etc. Out of these methods, this
research explores HMM and LSTM, as they are both promising and suitable for a
Time Series prediction problem.
Multiple models were created to predict the stock market
closing price, among which are HMM-LSTM models with differing number of HMM
hidden states, an LSTM model as comparison, and their BLSTM variants.
Hyperparameters of these models are also optimized during training. After
evaluating with RMSE, MAPE, and MAE, it is found that the HMM-LSTM model with 4
hidden states performed better than both their standard and BLSTM counterparts.
Specifically, in terms of RMSE and MAE, it performed 0.08% - 0.74% and 0.08% -
0.25?tter compared to the standard LSTM model, respectively. However, the
HMM-LSTM model with 3 numbers of hidden states performed worse than both their
standard and BLSTM counterparts. When compared to the LSTM model, it performed
0.03% - 0.31%, 1.17 % - 5.48%, and 1.27% - 3.58% worse in terms of MAPE, RMSE,
and MAE, respectively.
Kata Kunci : Stock Market Predictions, Neural Network, Hidden Markov Model, Long Short-Term Memory, Predictive Model, Error Measurement Tools