Laporkan Masalah

Pengaruh Tahan Beban dan Panjang Resonator Terhadap Kinerja Generator Listrik Termoakustik dengan Resonator Helmholtz

ANGGI RAHMAWATI, Ikhsan Setiawan, S.Si., M.Si. ; Prof. Dr. Agung Bambang Setio Utomo, S.U.

2024 | Skripsi | FISIKA

Penggerak utama termoakustik merupakan alat pengkonversi energi kalor menjadi energi akustik. Gelombang akustik dari penggerak utama (prime mover) termoakustik tersebut dapat digunakan untuk menghasilkan energi listrik dengan menggunakan alternator linier. Alat gabungan ini disebut sebagai generator listrik termoakustik. Penggunaan generator listrik termoakustik diharapkan dapat membantu mengurangi kalor buang (waste heat) di lingkungan yang dimanfaatkan sebagai sumber kalornya. Komponen utama generator listrik termoakustik dalam penelitian ini antara lain adalah resonator lurus, rongga Helmholtz, stack, penukar kalor suhu panas (termasuk electric heater) dan penukar kalor suhu lingkungan (termasuk sistem sirkulasi air pendingin), dan loudspeaker sebagai alternator linier beserta resistor beban. Penelitian difokuskan untuk mengetahui bagaimana ketergantungan beda suhu onset terhadap panjang resonator, dan ketergantungan daya listrik output terhadap panjang resonator dan resistansi beban. Digunakan 9 variasi panjang resonator dalam rentang (455 – 845) mm dan 27 variasi resistansi beban dalam rentang (5,3 – 399) ?. Daya kalor input yang digunakan adalah 303 W. Diperoleh hasil beda suhu onset minimum sebesar (199 ± 4) °C pada panjang resonator (695 ± 1) mm, sedangkan daya listrik rms maksimum sebesar (174 ± 3) mW diperoleh pada panjang resonator (595 ± 1) mm (dengan resistansi beban (32 ± 2) ?). Pada resistansi beban yang optimum yaitu berkisar 12 ? sampai 40 ? didapatkan daya listrik rms maksimum pada masing-masing variasi panjang resonator. Panjang resonator (595 ± 1) mm dan resistansi beban (32 ± 2) ? merupakan kombinasi optimum dalam generator listrik termoakustik dalam penelitian ini untuk dapat menghasilkan daya listrik terbesar (174 ± 3) mW.  

The thermoacoustic prime mover is a device that converts heat energy into acoustic energy. The acoustic waves from the thermoacoustic prime mover can be used to generate electrical energy using a linear alternator. This combined tool is referred to as a thermoacoustic electric generator. The use of thermoacoustic electric generators is expected to help reduce waste heat in the environment that is utilized as a heat source. The main components of the thermoacoustic electric generator in this study include a straight resonator, Helmholtz cavity, stack, heat temperature heat exchanger (including electric heater) and environmental temperature heat exchanger (including cooling water circulation system), and loudspeaker as a linear alternator along with load resistors. The research focused on finding out how the dependence of the onset temperature difference on the resonator length, and the dependence of the output electrical power on the resonator length and load resistance. The 9 variations of resonator length in the range of (455 <!--[if gte msEquation 12]>-<![endif]--><!--[if !msEquation]--> <!--[endif]--> 845) mm and 27 variations of load resistance in the range of (5.3 <!--[if gte msEquation 12]>-<![endif]--><!--[if !msEquation]--> <!--[endif]--> 399) ? were used. The input heat power used was 303 W. The minimum onset temperature difference of (199 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 4) <!--[if gte msEquation 12]>? <![endif]--><!--[if !msEquation]--> <!--[endif]-->was obtained at a resonator length of (695 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 1) mm, while the maximum rms electrical power of (174 ± 3) mW was obtained at a resonator length of (595 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 1) mm (with a load resistance of (32 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 2) ?). At the optimum load resistance ranging from 12 ? to 40 ?, the maximum rms electrical power is obtained at each resonator length variation. Resonator length (595 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 1) mm and load resistance (32 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 2) ? is the optimum combination in the thermoacoustic electric generator in this study to be able to produce the largest electrical power (174 <!--[if gte msEquation 12]>±<![endif]--><!--[if !msEquation]--> <!--[endif]--> 3) mW. The thermoacoustic prime mover is a device that converts heat energy into acoustic energy. The acoustic waves from the thermoacoustic prime mover can be used to generate electrical energy using a linear alternator. This combined tool is referred to as a thermoacoustic electric generator. The use of thermoacoustic electric generators is expected to help reduce waste heat in the environment that is utilized as a heat source. The main components of the thermoacoustic electric generator in this study include a straight resonator, Helmholtz cavity, stack, heat temperature heat exchanger (including electric heater) and environmental temperature heat exchanger (including cooling water circulation system), and loudspeaker as a linear alternator along with load resistors. The research focused on finding out how the dependence of the onset temperature difference on the resonator length, and the dependence of the output electrical power on the resonator length and load resistance. The 9 variations of resonator length in the range of (455  845) mm and 27 variations of load resistance in the range of (5.3  399) ? were used. The input heat power used was 303 W. The minimum onset temperature difference of (199  4) was obtained at a resonator length of (695  1) mm, while the maximum rms electrical power of (174 ± 3) mW was obtained at a resonator length of (595  1) mm (with a load resistance of (32  2) ?). At the optimum load resistance ranging from 12 ? to 40 ?, the maximum rms electrical power is obtained at each resonator length variation. Resonator length (595  1) mm and load resistance (32  2) ? is the optimum combination in the thermoacoustic electric generator in this study to be able to produce the largest electrical power (174  3) mW. 

 

Kata Kunci : resistansi listrik beban, panjang resonator, generator listrik termoakustik, beda suhu onset, daya listrik output

  1. S1-2024-456558-abstract.pdf  
  2. S1-2024-456558-bibliography.pdf  
  3. S1-2024-456558-tableofcontent.pdf  
  4. S1-2024-456558-title.pdf