<xml> </xml><![endif]--><!--[if gte mso 9]><xml> Normal 0 false false false EN-ID ZH-CN HI </xml><![endif]--><!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Mangal; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US; mso-bidi-language:HI;} </style> <![endif]-->The era of technology today is experiencing rapid development, the utilization of digital image processing is not a new concept. Digital image processing involves the manipulation of images using computers to generate information that can be further processed, formed, or analyzed by humans. This process can be used to identify objects based on specific features. This Final Project explains the application of digital image processing in the drone Ryze Tello to detect fire using YOLOv8 and OpenCV methods, with the programming language used is Python. The YOLOv8 method detects fire using the best data (best) as the basis for classification. This best data is produced from the training process of various datasets related to fire objects. On the other hand, in the OpenCV method, fire objects are detected based on a specific reference color, it is reddish-yellow. This research is conducted to compare the effectiveness of both approaches in detecting fires under various conditions."> <xml> </xml><![endif]--><!--[if gte mso 9]><xml> Normal 0 false false false EN-ID ZH-CN HI </xml><![endif]--><!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Mangal; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US; mso-bidi-language:HI;} </style> <![endif]-->The era of technology today is experiencing rapid development, the utilization of digital image processing is not a new concept. Digital image processing involves the manipulation of images using computers to generate information that can be further processed, formed, or analyzed by humans. This process can be used to identify objects based on specific features. This Final Project explains the application of digital image processing in the drone Ryze Tello to detect fire using YOLOv8 and OpenCV methods, with the programming language used is Python. The YOLOv8 method detects fire using the best data (best) as the basis for classification. This best data is produced from the training process of various datasets related to fire objects. On the other hand, in the OpenCV method, fire objects are detected based on a specific reference color, it is reddish-yellow. This research is conducted to compare the effectiveness of both approaches in detecting fires under various conditions.">
Laporkan Masalah

Implementasi Pendeteksian Api Berbasis YOLOV8 Menggunakan Teknologi Drone

ANITA KUSUMASARI, Imroatul Hudati, S.T., M.T.

2024 | Tugas Akhir | D4 Teknologi Rekayasa Instrumentasi dan Kontrol

<!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 9]><xml> Normal 0 false false false EN-ID ZH-CN HI </xml><![endif]--><!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Mangal; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US; mso-bidi-language:HI;} </style> <![endif]-->Era teknologi sekarang ini mengalami perkembangan yang pesat, penggunaan pengolahan citra digital bukanlah hal yang baru. Pengolahan citra digital adalah pemrosesan citra menggunakan komputer agar menghasilkan suatu informasi yang nantinya dapat diolah, dibentuk, atau dianalisis oleh manusia. Proses ini dapat digunakan untuk menentukan objek berdasarkan ciri tertentu. Pada Proyek Akhir ini, dijelaskan mengenai penerapan pengolahan citra digital ke dalam drone Ryze Tello untuk mendeteksi api dengan menggunakan metode YOLOv8 dan OpenCV dengan bahasa pemrograman Python. Metode YOLOv8 mendeteksi api dengan data terbaik (best) sebagai acuan klasifikasi. Data terbaik ini dihasilkan dari proses pelatihan berbagai dataset yang berkaitan dengan objek api. Sedangkan dalam metode OpenCV, objek api dideteksi melalui warna acuan tertentu, yaitu warna kuning kemerahan. Pengujian dilakukan untuk membandingkan efektivitas kedua metode ini dalam mendeteksi api di berbagai kondisi.

<!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 9]><xml> Normal 0 false false false EN-ID ZH-CN HI </xml><![endif]--><!--[if gte mso 9]><xml> </xml><![endif]--><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; mso-bidi-font-size:10.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Mangal; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US; mso-bidi-language:HI;} </style> <![endif]-->The era of technology today is experiencing rapid development, the utilization of digital image processing is not a new concept. Digital image processing involves the manipulation of images using computers to generate information that can be further processed, formed, or analyzed by humans. This process can be used to identify objects based on specific features. This Final Project explains the application of digital image processing in the drone Ryze Tello to detect fire using YOLOv8 and OpenCV methods, with the programming language used is Python. The YOLOv8 method detects fire using the best data (best) as the basis for classification. This best data is produced from the training process of various datasets related to fire objects. On the other hand, in the OpenCV method, fire objects are detected based on a specific reference color, it is reddish-yellow. This research is conducted to compare the effectiveness of both approaches in detecting fires under various conditions.

Kata Kunci : pengolahan citra, drone, deteksi api, YOLOv8, OpenCV, Python

  1. D4-2024-464238-abstract.pdf  
  2. D4-2024-464238-bibliography.pdf  
  3. D4-2024-464238-tableofcontent.pdf  
  4. D4-2024-464238-title.pdf