PENAKSIRAN SUMBERDAYA ENDAPAN BIJIH SKARN LOGAM DASAR MENGGUNAKAN METODE ORDINARY KRIGING & MEDIAN INDICATOR KRIGING DI BLOK A RUWAI, KABUPATEN LAMANDAU, KALIMANTAN TENGAH
Hasan Riyadi, Dr.rer.nat. Ir. I Wayan Warmada, IPM. ; Ir. Anastasia Dewi Titisari, M.T., Ph.D., IPU.
2024 | Tesis | S2 Teknik Geologi
Estimasi sumberdaya skarn logam dasar Blok A Ruwai dapat
menggunakan metode geostatistik seperti kriging.
Pada umunya data kadar sumberdaya bijih skarn logam dasar mempunyai nilai
koefisien variansi (CV) lebih dari 0,5 memperlihatkan variabilitas data yang
tinggi. Metode kriging liniear kurang
memberikan hasil yang memuaskan oleh karena itu diperlukan metode kriging
non-linear. Oleh karena itu dipilih metode ordinary kriging yang merupakan salah
satu dari metode kriging linier dan metode median
indicator kriging yang merupakan salah satu dari metode kriging non-linier. Tujuan penelitian
ini menganalisis hasil estimasi sumberdaya skarn logam dasar dengan metode ordinary kriging dan metode median indicator kriging dan
menganalisis metode estimasi sumberdaya berdasarkan kadar Pb-Zn yang paling
reliable berdasarkan parameter cross
validation, probability plot dan visualisasi data. Dimana keakuratan tersebut diperoleh dari selisih
nilai kadar dari komposit (raw data)
dengan hasil taksiran didalam model blok. Penelitian ini memakai software Micromine 2020 dengan
metodologi yang meliputi pengumpulan data bor assay, collar, survey, dan litologi. Kemudian interpretasi geologi,
konstruksi model blok, analisis statistik dan geostatistik, estimasi sumberdaya
skarn logam dasar, dan pemilihan metode yang paling reliable.
Nilai
koefisien variansi komposit (raw data)
skarn logam dasar Blok A Ruwai adalah 0,49. Hasil crossvalidation dari estimsi sumberdaya skran logam dasar Blok A
Ruwai menunjukkan metode ordinary kriging
dan median indicator kriging
berturut-turut dengan nilai root mean
square error (RMSE) 0,40; 0,20 dimana nilai RMSE metode median indicator kriging mendekati 0,
nilai koefisien korelasi (r) dan determinasi (r2) berturut-turut 0,8
dan 0,7; 0,9 dan 0,8 dimana nilai r dan r2 metode median indicator kriging mendekai nilai
1, metode ordinary kriging memiliki
kurva probabilitas dan visualisasi sayatan yang cenderung menjauhi data
komposit (raw data) sedangkan metode median indicator kriging memiliki kurva
probabilitas kumulatif dan visualisasi sayatan yang cenderung mendekati data
komposit.
Berdasarkan parameter validasi
yaitu nilai root mean square error
(RMSE), scatter plot, kurva
probabilitas kumulatif, dan visualisasi sayatan 2 dimensi. Karena distribusi
kadar tidak menentu (erractic) dan
nilai koefisien variansi yan tinggi sehingga metode median indicator kriging merupakan metode yang paling reliable atau
dapat diandalkan karena hasil estimasi mendekati data komposit (raw data). sebaran bijih skarn logam
dasar Blok A Ruwai dengan metode ordinary
kriging dan metode median indicator
kriging memiliki kecenderungan berarah N69,59o E dan N69,16o E. Kondisi tersebut karena dipengaruhi aspek kontrol
geologi yang terdapat di lokasi penelitian berupa kontak antara batuan sedimen
berada dibagian utara dengan batuan vulkanik berada dibagian selatan.
Resource estimation of base metal skarn in Block A Ruwai
can be done using geostatistical methods such as kriging. In general, base
metal skarn ore resource grade data has a coefficient of variance (CV) value of
more than 0.5, indicating high data variability. Linear kriging method does not
give satisfactory results, therefore a non-linear kriging method is needed. Therefore,
the ordinary kriging method is the
linear kriging methods and the median indicator kriging method is the
non-linear kriging methods are used. The purpose of this study is to analyze
the results of base metal skarn resource estimation using ordinary kriging method
and median indicator kriging method and analyze the most reliable resource estimation
method by parameters cross validation, probability plot and data visualization.
Where the accuracy is obtained from the difference in grade values from the
composite (raw data) with the estimated results in the block model. This
research uses Micromine 2020 software with a methodology that includes
collecting assay, collar, survey and lithology drill data. Then geological
interpretation, block model construction, statistical and geostatistical
analysis, base metal skarn resource estimation, and selection of the most
reliable method.
The composite coefficient of variance (raw data) of the
Block A Ruwai base metal skarn is 0.49. The crossvalidation results of the
resource estimation of the Block A Ruwai base metal skarn show the ordinary
kriging and median indicator kriging methods with root mean square error (RMSE)
values of 0.40; 0.20 where the RMSE value of the median indicator kriging
method is close to 0, the correlation coefficient (r) and determination (r2)
values are 0.8 and 0.7, respectively; 0.9 and 0.8 where the r and r2
values of the median indicator kriging method approach the value of 1, the
ordinary kriging method has a probability curve and visualization of incisions
that tend to move away from the composite data (raw data) while the median
indicator kriging method has a cumulative probability curve and visualization
of incisions that tend to approach the composite data.
Based on validation parameters,
namely the root mean square error (RMSE) value, scatter plot, cumulative
probability curve, and 2-dimensional incision visualization. Because the
distribution of levels is erratic (erractic) and the coefficient of variance is
high, the median indicator kriging method is the most reliable method because
the estimation results are close to the composite data (raw data). the distribution
of Block A Ruwai base metal skarn ore with the ordinary kriging method and the
median indicator kriging method has a trend towards N69.59o E and
N69.16o E. This condition is because it is influenced by aspects of
geological control at the research site in the form of contact between
sedimentary rocks in the north and volcanic rocks in the south.
Kata Kunci : Skarn logam dasar, ordinary kriging, median indicator kriging.