Laporkan Masalah

ESTIMATOR ROBUST TERHADAP PENCILAN UNTUK MODEL REGRESI DATA PANEL TIDAK SEIMBANG DENGAN PENDEKATAN FIXED-EFFECTS

Desi Yuniarti, Prof. Dr. rer. nat. Dedi Rosadi, S.Si., M.Sc.; Dr. Abdurakhman, S.Si., M.Si.

2024 | Disertasi | S3 Matematika

            Analisis regresi merupakan suatu analisis yang dapat digunakan untuk melihat hubungan antara suatu variabel dependen dengan satu atau lebih variabel independen. Analisis regresi yang menggunakan data panel dikenal sebagai analisis regresi data panel. Data panel merupakan gabungan data cross-section dan data time-series. Data panel ini tidak lepas dari kemungkinan adanya pencilan yang dapat menyebabkan estimasi model regresi data panel dapat menjadi bias. Sehingga diperlukan suatu metode robust untuk mendapatkan estimator yang sudah tidak dipengaruhi oleh pencilan. Penelitian disertasi ini bertujuan untuk mengembangkan suatu estimator robust bagi model regresi data panel tidak seimbang dengan pendekatan fixed-effects, menyelidiki sifat-sifat estimator yang diperoleh serta melakukan penerapan metode robust tersebut pada data riil.

        Berdasarkan hasil penelitian disertasi ini diperoleh bahwa penanganan pencilan pada model regresi data panel tidak seimbang satu arah dengan pendekatan fixed-effects dapat dilakukan menggunakan metode robust Within-Groups Generalized M-Estimators (WGM), Groupwise Principal Sensitivity Components (GPSC) dan matriks pengaruh panel. Penelitian ini juga telah mengembangkan metode robust menggunakan matriks pengaruh panel dalam menentukan estimasi robust bagi model regresi data panel tidak seimbang satu arah dengan pendekatan fixed-effects. Metode robust menggunakan matriks pengaruh panel lebih memperhatikan struktur data panel yang terdiri atas beberapa unit cross-section karena pembentukan matriks pengaruh panel dilakukan bagi masing-masing unit cross-section sehingga hasil estimasi robust yang diperoleh dapat lebih baik.

        Sifat-sifat estimator dari metode robust ditentukan melalui studi simulasi. Hasil studi simulasi untuk metode WGM diperoleh bahwa masing-masing penerapan estimator multivariat lokasi dan skala pada metode WGM menghasilkan nilai Mean Squared Error (MSE) residual tidak jauh berbeda dalam mengatasi pencilan vertikal dan pencilan vertikal blok, namun untuk pencilan leverage dan pencilan leverage blok diperoleh bahwa S-multivariat memberikan rata-rata nilai MSE residual yang lebih baik. Selanjutnya berdasarkan hasil studi simulasi terhadap metode robust menggunakan matriks pengaruh panel diperoleh bahwa metode ini memberikan persentase ketepatan pendeteksian pencilan vertikal dan vertikal blok yang sangat baik. Selain itu, metode robust ini menghasilkan nilai MSE parameter yang baik dalam mengestimasi model regresi data panel yang memuat pencilan leverage dan pencilan leverage blok. Hasil yang sama dapat dilihat dari nilai MSE residual di mana metode ini juga memberikan nilai MSE residual yang rendah untuk data panel yang memuat pencilan leverage dan leverage blok. Hasil studi simulasi juga dilakukan dalam membandingkan hasil estimasi menggunakan metode robust WG, WGM, GPSC dan matriks pengaruh panel. Berdasarkan hasil studi simulasi perbandingan metode robust diperoleh bahwa metode GPSC dapat mengatasi semua pencilan pada data panel dengan baik. Sedangkan metode WGM lebih baik dalam mengatasi pencilan vertikal dan vertikal blok. Selanjutnya metode robust menggunakan matriks pengaruh panel lebih baik dalam mengatasi pencilan leverage dan leverage blok.

        Selanjutnya berdasarkan hasil penerapan pada data riil menunjukkan bahwa metode robust menggunakan matriks pengaruh panel memberikan nilai MSE yang lebih baik dibanding metode estimasi robust menggunakan GPSC, WGM dan metode robust menggunakan matriks pengaruh tanpa mempertimbangkan struktur data panel.

        Regression analysis can be used to see the relationship between a dependent variable and one or more independent variables. Regression analysis that uses panel data is known as panel data regression analysis. Panel data combines cross-section data and time-series data. This panel data is not accessible due to the possibility of outliers, which can cause the estimation of the panel data regression model biased. So, we need a robust method to get an estimator that is not influenced by outliers. This dissertation research aims to develop a robust estimator for unbalanced panel data regression models using the fixed-effects approach, investigate the properties of the estimator obtained, and apply the robust method to actual data.

        Based on the results of this dissertation research, it was found that handling outliers in one-way unbalanced panel data regression models using a fixed-effects approach can be carried out using robust methods, namely Within-Groups Generalized M-Estimators (WGM), Groupwise Principal Sensitivity Components (GPSC), and panel influence matrix. This research has also developed a robust method using a panel influence matrix to determine robust estimates for a one-way unbalanced panel data regression model using a fixed-effects approach. The robust method using a panel influence matrix pays more attention to the panel data structure, which consists of several cross-section units because the formation of the panel influence matrix is carried out for each cross-section unit so that the robust estimation results obtained can be better.

        The estimator properties of the robust method are determined through simulation studies. The simulation study results for the WGM method show that each application of the location and scale multivariate estimator in the WGM method produces residual Mean Squared Error (MSE) values that are not much different in dealing with vertical and block vertical outliers. However, the results obtained that S-multivariate provides a better average residual MSE value in dealing with leverage and block leverage outliers. Furthermore, based on a simulation study of the robust method using a panel influence matrix, it was found that this method provides a good percentage of accuracy in detecting vertical and block vertical outliers. In addition, this robust method produces good MSE parameter values in estimating panel data regression models that contain leverage outliers and block leverage outliers. The same results can be seen from the residual MSE value, where this method also provides low residual MSE values for panel data containing leverage outliers and block leverage. The simulation study results were also carried out to compare the estimation results using the robust WG, WGM, GPSC, and panel influence matrix methods. Based on the results of a comparative simulation study of robust methods, it was found that the GPSC method can handle all outliers in panel data well. Meanwhile, the WGM method is better at dealing with vertical and block vertical outliers. Furthermore, the robust method using a panel influence matrix is better at overcoming leverage and block leverage outliers. 

        Furthermore, based on the results of application to actual data, it shows that the robust method using a panel influence matrix provides better MSE values than the robust estimation method using GPSC, WGM and the robust method using an influence matrix without considering the panel data structure.

Kata Kunci : Estimator robust, pencilan, regresi data panel tidak seimbang.

  1. S3-2024-450314-abstract.pdf  
  2. S3-2024-450314-bibliography.pdf  
  3. S3-2024-450314-tableofcontent.pdf  
  4. S3-2024-450314-title.pdf