Implementasi Artificial Intelligence berbasis Neural Network untuk Liveness Detection
Saskia Dwi Ulfah, Dr. Eng. Igi Ardiyanto, S.T., M.Eng., Prof. Ir. Tumiran, M.Eng., Ph.D.
2023 | Skripsi | TEKNOLOGI INFORMASI
Sistem keamanan berbasis
pengenalan wajah (face recognition) semakin meningkat karena kemudahan,
ketepatan, dan keakuratan yang diberikan. Secara bersamaan, terdapat usaha
untuk mengeksploitasi kelemahan pada sistem dengan teknologi face
recognition melalui face presentation attack. Pendekatan face
liveness detection atau face anti-spoofing digunakan untuk mengatasi
face presentation attack. Penelitian ini bertujuan untuk menentukan pre-trained
model terbaik untuk face liveness detection atau face
anti-spoofing. Selain itu, akan ditentukan pengaruh background
terhadap performa pre-trained model. Metode yang diimplementasikan
adalah CNN berbasis transfer learning. Percobaan dilakukan pada dua dataset
untuk face liveness detection atau face anti-spoofing, yaitu NUAA
Imposter Database dan Replay-Attack Database. Untuk setiap dataset,
terdapat versi yang mengandung detail background (format 1) dan versi
yang hanya mengandung area wajah (format 2). Pada NUAA Imposter Database,
VGG-19 yang dilatih dengan dataset format 1 dan learning rate sebesar 10?3
memiliki performa terbaik dengan HTER sebesar 1,37%, F1 score sebesar
98,63%, binary accuracy sebesar 98,29%, dan loss sebesar 0,0417.
Pada Replay-Attack Database, VGG-16 yang dilatih dengan dataset format 1
dan learning rate sebesar 10?4 memiliki performa terbaik dengan
HTER sebesar 2,65%, F1 score sebesar 99,12%, binary accuracy
sebesar 98,65%, dan loss sebesar 0,0539. Pada NUAA Imposter Database dan
Replay-Attack Database, background berpengaruh terhadap performa pre-trained
model, baik itu berpengaruh positif maupun negatif. Pada VGGNet (VGG-16 dan
VGG-19), Inception-v3, dan Xception, background dapat menurunkan nilai
HTER. Pada ResNet-101, background dapat menaikkan nlai HTER.
The security system based on
face recognition is increasingly improving due to the convenience, accuracy,
and reliability it provides. Simultaneously, there are efforts to exploit
weaknesses in the system through face presentation attacks using face
recognition technology. The approach of face liveness detection or face
anti-spoofing is used to address face presentation attacks. This research aims
to determine the best pre-trained model for face liveness detection or face
anti-spoofing. Additionally, the influence of the background on the performance
of the pre-trained model will be determined. The implemented method is transfer
learning-based CNN. Experiments were conducted on two datasets for face
liveness detection or face anti-spoofing, namely the NUAA Imposter Database and
the Replay-Attack Database. For each dataset, there are versions that contain detailed
backgrounds (format 1) and versions that only contain the face area (format 2).
In the NUAA Imposter Database, VGG-19 trained with format 1 dataset and a learning
rate of 10?3 showed the best performance with an HTER of 1.37%, F1
score of 98.63%, binary accuracy of 98.29% and a loss of 0.0417. In the
Replay-Attack Database, VGG-16 trained with format 1 dataset and a learning
rate of 10?4 demonstrated the best performance with an HTER of
2.65%, F1 score of 99.12%, binary accuracy of 98.65% and a loss of 0.0539. In
both the NUAA Imposter Database and the Replay-Attack Database, the background
had an impact on the performance of the pre-trained models, whether it was
positive or negative. In VGGNet (VGG-16 and VGG-19), Inception-v3 and Xception,
the background could decrease the HTER value. However, in ResNet-101, the
background could increase the HTER value.
Kata Kunci : face liveness detection, face anti-spoofing, convolutional neural network, transfer learning, pre-trained model