MODEL PERTUMBUHAN BIBIT KELAPA SAWIT (Elaeis guineensis Jacq.) PADA TAHAP PEMBIBITAN UTAMA MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK
Sumaryanto, Dr. Ir. Endy Suwondo, DEA
2023 | Tesis | S2 Teknologi Industri Pertanian
Industri minyak sawit memiliki peran strategis, antara lain penghasil
devisa terbesar, lokomotif perekonomian nasional, kedaulatan energi, pendorong
sektor ekonomi kerakyatan, dan penyerapan tenaga kerja. Kegiatan awal dalam
budidaya kelapa sawit yang sangat penting dan berpengaruh terhadap kinerja
tanaman kelapa sawit selama umur ekonomisnya adalah pembibitan. Faktor utama
yang mempengaruhi pertumbuhan bibit adalah kondisi iklim dan tanah seperti suhu
udara (oC), kelembaban udara (%), intensitas cahaya (W/m2),
dan curah hujan (mm) serta kebutuhan hara tanaman juga menjadi unsur penting
dalam menopang pertumbuhan tanaman. Penelitian dan kajian terhadap komoditas
perkebunan terutama kelapa sawit pada umumnya memerlukan waktu yang panjang,
sehingga diperlukan suatu pendekatan kajian secara matematis yang memungkinkan
untuk mereduksi waktu tersebut dengan pemodelan dan simulasi. Pemodelan dan
simulasi revolusioner berbasis Artificial intelligence yang digunakan
dalam penelitian ini adalah Backpropagation Neural Network (BPNN). Tujuan
penelitian ini adalah mengembangkan model pendugaan pertumbuhan bibit kelapa
sawit. Pengumpulan data lapangan berdasarkan pengamatan terhadap parameter
tinggi tananam, jumlah daun, diameter batang, dan kandungan klorofil daun pada
bibit kelapa sawit sejak umur 1 bulan setelah tanam hingga 9 bulan pada tahap Main
Nursery. Beserta data pengamatan lingkungan dan data pemupukan yang
diaplikasikan. Pengembangan model BPNN dengan parameter input suhu,
kelembaban, intensitas cahaya matahari, curah hujan, hara N, P, K, Mg dengan
parameter output tinggi tanaman, jumlah pelepah, diameter batang, dan
indeks klorofil. Pengembangan model pendugaan tinggi bibit kelapa sawit dengan
arsitektur jaringan BPNN 10-8-1 diperoleh nilai akurasi berdasarkan koefisen
korelasi (R) sebesar 0.969; koefisien determinasi R2 (0,94),
koefisien model evaluasi MSE (0,0028), dan RMSE (0,053). Pengembangan model pendugaan
jumlah daun bibit kelapa sawit, R sebesar 0.902; R2 (0,81), MSE (0,0061),
dan RMSE (0,053) pada arsitektur jaringan BPNN 10-25-1. Selanjutnya pada pengembangan
model pendugaan diameter batang bibit kelapa sawit diperoleh nilai akurasi (R)
sebesar 0,957; R2 (0,91), MSE (0,0042), dan RMSE (0,064) pada
arsitektur jaringan BPNN 10-8-1. Sedangkan pada pengembangan model pendugaan
indeks klorofil bibit kelapa sawit pada arsitektur jaringan BPNN 10-3-1
berturut-turut R, R2, MSE, dan RMSE sebesar 0,465; 0,216; 0,0137;
dan 0,117. Hasil simulasi model untuk pendugaan tinggi bibit, jumlah pelepah,
diameter batang, dan indeks klorofil bibit kelapa sawit menunjukkan persentase tingkat
kesalahan pendugaan berdasarkan nilai MAPE berturut-turut 12,01%;
10,67%; 16,19%; dan 15,61%.
The palm oil
industry has a strategic role, including being the largest foreign exchange
earner, driving the national economy, energy sovereignty, driving the people's
economic sector, and absorbing manpower. The initial activity in oil palm
cultivation which is very important and influences the performance of oil palm
plants during their economic life is nursery. The main factors affecting
seedling growth are climatic and soil conditions such as air temperature (oC),
air humidity (%), light intensity (W/m2), and rainfall (mm) as well
as plant nutrient requirements which are also important elements in sustaining
plant growth. Research and studies on plantation commodities, especially oil
palm, generally require a long time, so a mathematical study approach is needed
that allows reducing this time by modeling and simulation. The revolutionary
artificial intelligence-based modeling and simulation used in this research is
the Backpropagation Neural Network (BPNN). The aim of this research is to develop
a prediction model for the growth of oil palm seedlings. Field data collection
was based on observations of the parameters of plant height, number of leaves,
stem diameter, and leaf chlorophyll content in oil palm seedlings from 1 month
after planting to 9 months in the Main Nursery stage. Along with environmental
observation data and applied fertilization data. Development of the BPNN model
with the input parameters of temperature, humidity, sunlight intensity,
rainfall, N, P, K, and Mg nutrients with the output parameters of plant height,
number of fronds, stem diameter, and chlorophyll index. Development of a model
for estimating the height of oil palm seedlings with the BPNN 10-8-1 network
architecture obtained an accuracy value based on the correlation coefficient
(R) of 0.969; coefficient of determination R2 (0.94), coefficient of
the MSE evaluation model (0.0028), and RMSE (0.053). Development of a model for
estimating the number of leaves of oil palm seedlings, R of 0.902; R2
(0.81), MSE (0.0061), and RMSE (0.053) on the BPNN 10-25-1 network
architecture. Furthermore, in developing a model for estimating the diameter of
the oil palm seedlings, the accuracy value (R) was 0.957; R2 (0.91),
MSE (0.0042), and RMSE (0.064) on the BPNN 10-8-1 network architecture. Whereas
in the construction of a model for estimating the chlorophyll index of oil palm
seedlings on the BPNN 10-3-1 network architecture, the R, R2, MSE,
and RMSE successively were 0.465; 0.216; 0.0137; and 0.117. The model
simulation results for estimating seedling height, number of fronds, stem
diameter, and chlorophyll index of oil palm seedlings showed that the
percentage of error rate based on MAPE value was 12.01%; 10.67%; 16.19%; and 15.61%.
Kata Kunci : backpropagation neural network, model prediction, oil palm seedling