DAFTAR ISI

Halaman Juduli
Halaman Pengesahan ii
Halaman Mottoiii
Kata Pengantar iv
Halaman Soal vi
Intisarivii
Daftar Isiviii
Daftar Gambarxvii
Daftar Tabel XX
Daftar Notasi xxi
BAB I PENDAHULUAN
1. Pemisahan Udara1
2. Proses Kriogenik 1
Metode - Metode Untuk Mendapatkan Temperatur Rendah
1. Perubahan Fase2
2. Efek Joule - Thomson3
3. Efek Magnetik4
4. Mesin Ekspansi
3. Material Untuk Konstruksi Bidang Kriogenik
1. Modulus Elastisitas 6
2. Tegangan Luluh dan Tegangan Tarik6
3. Toughness
4. Kelelahan7
5. Creep
4. Pemanfaatan Kriogenik pada Industri Pupuk

BAB II PERANCANGAN SISTEM PENDINGIN	9
1. Pencair Udara	
1. Sistem Pencair Udara Linde - Hampson	9
2. Pencair Gas Claude	13
3. Siklus Heylandt	15
2. Rancangan Proses Pemisahan Udara	15
1. Efek Joule - Thomson	17
2. Koefisien Joule - Thomson.	18
3. Penentuan Kuantitas Udara Proses	20
4. Rancangan Kerja Proses.	20
1. Kompresi	20
2. Pemurnian Udara (Scrubbing)	27
1. Tahap Penurunan Tekanan	28
2. Tahap Pemanasan.	28
3. Tahap Pendinginan	29
4. Tahap Pemurnian dengan Reversing Heat Exchanger	29
5. Tahap Pemurnian dengan Reversing Regenerator	29
3. Perancangan Sistem Pendingin	30
5. Penyekat Panas	33
1. Multilayer Insulation.	33
2. Vacuum Insulation.	34
3. Powder Insulation.	34
4. Foam Insulation	34
BAB III KOLOM DISTILASI.	35
1. Pendahuluan.	35
2. Perancangan Kolom Distilasi	36
1. Kondisi Udara Umpan (Feed)	38

	2. Tekanan Dalam Kolom Distilasi	40
3. I	Ekspansi Isenthalpic	41
4. I	Proses Pemisahan	43
	1.Pengecekan Komponen Kunci	47
	2. Menentukan Konstanta Underwood.	49
	3. Menentukan Rasio Reflux dan Rasio Reflux Minimum.	50
ź	4. Menentukan Jumlah Stage Minimum.	50
:	5. Menentukan Jumlah Plate Teoritis.	51
(6. Menentukan Efisiensi Plate dan Jumlah Plate Aktual	53
,	7. Menentukan Komposisi Hasil Pemisahan	54
;	8. Analaisa Kesetimbangan Kalor dan Massa	57
5. N	Menentukan Ukuran Kolom Distilasi	.58
:	1. Menentukan Diameter Kolom.	58
,	2. Merancang Sieve Plate	65
:	3. Entrainment	70
Z	4. Menentukan Tebal Dinding Kolom.	72
6. N	Merancang Reboiler	72
3	1. Menentukan Jumlah Transfer Panas Maksimum	.72
, 3	2. Menentukan Jumlah Panas yang ditransfer dari Udara Bertekanan Tinggi	73
-	3. Menentukan Koefisien Perpindahan Panas Sisi Udara Bertekanan Tinggi	74
4	4. Menentukan Koefisien Perpindahan Panas Sisi Udara Cair	76
	5. Menentukan Koefisien Perpindahan Panas Menyeluruh.	.77
(6. Menentukan Beda Suhu Rata - Rata Logaritmik	78
¢	7. Menentukan Luas permukaan Tube didapatkan dari Perancangan Reboiler	:78
ţ	8. Menentukan penurunan Tekanan Sisi Udara Bertekanan	.79
7. N	Merancang Kondensor	81
-	l. Menentukan Jumlah Panas yang ditransfer Kondensor	.82
,	2. Tinjanan Media Pendingin	.82

3. Menentukan Koefisien Perpindahan Panas Sisi Dalam Tube	85
4. Menentukan Koefisien Perpindahan Panas Sisi Luar Tube	86
5. Menentukan Koefisien Perpindahan Panas Menyeluruh	88
6. Menentukan LMTD	89
7. Menentukan Luas Permukaan Luar Tube dari Perancangan Kondensor	90
8. Menentukan Tebal Kolom Kondensor	91
9. Menentukan Tebal Head kondensor.	91
10. Menentukan Tebal Plate antara Kondensor dan Kolom Distilasi	92
11. Menentukan Tinggi Kolom Distilasi	94
BAB IV KOMPRESOR UTAMA	95
1. Klasifikasi Kompresor	95
2. Pemilihan Kompresor.	98
3. Siklus Kompresi pada Diagram p - V	99
4. Perancangan Kompresor Tingkat L	100
1. Efisiensi Volumetris.	100
2. Efisiensi Volumetris Keseluruhan	102
3. Daya Poros dan Daya Motor Listrik.	102
4. Diameter Silinder dan Panjang langkah Torak	103
5. Silinder	105
1. Tebal Liner Silinder	105
2. Panjang Silinder	106
3. Tebal Kepala Silinder.	106
4. Pengecekan Kekuatan Silinder	106
5. Baut Pengikat Kepala Silinder	109
6. Torak	110
7. Batang Torak	111
8. Poros Engkol	115

9. Cincin Torak	118
10. Pena Torak.	121
11. Katup Kompresor	123
1. Perancangan Katup Isap	124
2. Perancangan Katup Buang	125
5. Perancangan Kompresor Tingkat II - VI	128
6. Pasak	130
1. Pasak pada Poros Kompresor Tekanan Rendah.	130
2. Pasak pada Poros Kompresor Tekanan Tinggi	132
7. Motor Penggerak	133
8. Pelumasan.	134
BAB V PENUKAR PANAS UTAMA	135
1. Pemilihan Bahan	136
2. Analisa Refrigeran.	136
1. Ekspansi Isenthalpic Refrigeran Udara Gas.	138
2. Percampuran Refrigeran Udara Cair Uap dengan Uap N2 dari Kond	lensor.140
3. Beban Kalor Penukar Panas Utama.	141
Beban Kalor pada Kondisi Uap Panas Lanjut	142
2. Beban Kalor pada Kondisi Evaporasi	143
4. Menentukan Koefisien Perpindahan Panas.	143
1. Koefisien Perpindahan Panas Sisi Udara Bertekanan	143
2. Koefisien Perpindahan Panas Sisi Refrigeran	146
1. Koefisien Perpindahan Panas Kondisi Evaporasi	146
2. Koefisien Perpindahan Panas Kondisi Uap Panas Lanjut	150
3. Menetukan Panjang Pipa yang dibutuhkan Penukar Panas Utama	151
5. Menentukan Penurunan Tekanan.	151
1. Menentukan Penurunan Tekanan dalam Pipa.	152

2. Menentukan Penurunan Tekanan di luar Pipa	152
6. Pengecekan Ketebalan Pipa dan Shell.	153
7. Bocoran Panas pada Penukar Panas Utama	154
1. Bocoran Panas akibat Radiasi.	155
2. Bocoran Panas akibat Konduksi	159
BAB VI AFTER COOLER	161
1. Pemilihan Bahan.	161
2. Analisa Refrigeran.	161
3. Beban Kalor pada After Cooler	162
4. Menentukan Koefisien Perpindahan Panas	162
1. Koefisien Perpindahan Panas Sisi Udara Bertekanan	163
2. Koefisien Perpindahan Panas Sisi Refrigeran	165
3. Menentukan Koefisien Perpindahan Panas Total	166
4. Menentukan Luas Perpindahan Panas yang dibutuhkan	167
5. Menentukan Penurunan Tekanan.	168
1. Menentukan Penurunan Tekanan dalam Pipa.	168
2. Menentukan Penurunan Tekanan di luar Pipa	169
6. Pengecekan Ketebalan Pipa dan Shell	169
7. Bocoran Panas pada After Cooler	171
1. Bocoran Panas akibat Radiasi	171
2. Bocoran Panas akibat Konduksi	174
BAB VII MESIN REFRIGERASI AMMONIA	177
1. Evaporator	183
2. Pemilihan Bahan	183
3. Beban Kalor Evaporator	183
1. Beban Kalor pada kondisi Uap Panas Lanjut	184

UNIVERSITAS GADJAH MADA

UNIVERSITAS GADJAH MADA

UNIVERSITAS GAdjah Mada, 1997 | Diunduh dari http://etd.repository.ugm.ac.id/

2. Beban Kalor pada kondisi Evaporasi 1	84
4. Menentukan Koefisien Perpindahan Panas 1	84
1. Koefsien Perpindahan Panas Sisi Udara Bertekanan1	85
Koefsien Perpindahan Panas Sisi Referigeran 1	.87
5. Menentukan Panjang Pipa yang dibutuhkan Evaporator	92
6. Menentukan Penurunan Tekanan.	92
1. Menentukan Penurunan Tekanan dalam Pipa19	92
2. Menentukan Penurunan Tekanan di luar Pipa19	93
7. Pengecekan Ketebalan Pipa dan Shell 19	93
8. Bocoran Panas pada Evaporator19	
1. Bocoran Panas akibat Radiasi 19)5
2. Bocoran Panas akibat Konduksi19	9
2. Kondensor)1
1. Macam Kondensor20	2
2. Pemilihan Bahan203	3
3. Beban Pendinginan Kondensor203	3
Beban Pendinginan pada kondisi Desuperheating)
Beban Pendinginan pada kondisi Kondensasi	ļ
3. Beban Pendinginan pada kondisi Subcooling	
4. Koefisien Perpindahan Panas Kondensor	
1. Koefisien Perpindahan Panas Sisi Air (dalam Pipa)204	
2. Koefisien Perpindahan Panas Sisi Refrigeran (luar Pipa)207	
1. Koefisien Perpindahan Panas kondisi Uap Panas Lanjut 207	7
2. Koefisien Perpindahan Panas kondisi Kondensasi211	
3. Koefisien Perpindahan Panas kondisi Subcooling212	
5. Menentukan Panjang Pipa yang dibutuhkan Kondensor	
6. Kebutuhan Refrigeran 214	
3. Pompa Sirkulasi	

8. Menara Pendingin.	215
BAB VIII PENGONTROL ALIRAN REFRIGERAN	217
1. Prinsip Dasar Sistem Kontrol	
2. Macam - macam Alat Kontrol	
1. Kontrol Suhu	
2. Kontrol Aliran Fluida	
1. Pipa Kapiler	
2. Automatic Expansion Valve (AEV)	
3. Thermostatic Expansion Valve (TEV)	
4. Low Side Float Valve	
5. High Side Float Valve	
3. Kontrol Pengaman Aliran Fluida.	
1. Katup Solenoid.	
2. Check Valve	
3. Pengatur Aliran Air pada Kondensor	
4. Kontrol Pengaman.	222
1. Kontrol Overload Motor	
2. Time Delay Relay.	223
3. Switch Pengaman Oli	223
4. Kontrol Tekanan.	223
BAB IX PERALATAN TAMBAHAN	225
1. Akumulator	225
2. Pemisah Oli	
3. Tabung Receiver	
4. Saringan Pengering.	
5. Pengontrolan Korosi	

6. Endapan.	228
BAB X UNJUK KERJA PENUKAR PANAS	
BAB XI PENUTUP	232
DAFTAR PUSTAKA	237
DAFTAR LAMPIRAN	239

DAFTAR GAMBAR

Gambar 1 - 1 Skema Proses Refrigerasi Metode Perubahan Fase	2
Gambar 1 - 2 Prinsip Joule - Thomson	3
Gambar 1 - 3 Prinsip Pendinginan dengan Efek Magnetik	4
Gambar 1 - 4 Prinsip Mesin Ekspansi	5
Gambar 1 - 5 Tegangan Luluh dan Tegangan tarik Alumunium dan Paduannya	6
Gambar 1 - 6 Perpanjangan Tarik dan Energi Impact Beberapa Logam	7
Gambar 2 - 1 Pencair Gas Linde	9
Gambar 2 - 2 Diagram T - s Pencair Linde	.10
Gambar 2 - 3 Pencair Gas Linde Tekanan Tinggi	12
Gambar 2 - 4 Diagram T - s Pencair Linde Tekanan Tinggi	.12
Gambar 2 - 5 Pencair Gas Claude.	.14
Gambar 2 -6 Diagram T - s Pencair Gas Claude	.14
Gambar 2 - 7 Rencana Siklus Pemisahan Udara	.16
Gambar 2 - 8 Kurva Inversi pada Diagram Tekanan - Temperatur	18
Gambar 2 - 9 Koefisien Joule - Thomson untuk Udara sebagai Fungsi Temperatur	.19
Gambar 2 - 10 Suhu Buang Refrigeran Akibat Kompresi Isentropik	.31
Gambar 2 - 11 Skema Kerja Sistem Pendingin.	.32
Gambar 3 - 1 Kolom Distilasi	.36
Gambar 3 - 2 Kolom Tunggal	.37
Gambar 3 - 3 Grafik Korelasi Gilliant	.51
Gambar 3 - 4 Grafik untuk menentukan Efisiensi Plate.	.53
Gambar 3 - 5 Grafik untuk menentukan Nilai K 1 (Sieve Plate)	.60
Gambar 3 - 6 Grafik untuk menentukan Susunan Aliran Cairan	.65
Gambar 3 - 7 Grafik hubungan antara Area Downcomer dengan Panjang Weir	66
Gambar 3 - 8 Grafik Weep Point Correlation	.67
Gambar 3 - 9 Grafik Koefisien Discharge untuk Sieve Plate	.68

Gambar 3 - 10 Correlation Entrainment untuk Sieve Plate	71
Gambar 3 - 11 Reboiler Hasil Perancangan	79
Gambar 3 - 12 Aliran Massa Proses di Kolom Atas	83
Gambar 3 - 13 Plate antara Kondensor dan Kolom Atas	92
Gambar 3 - 14 Tekanan yang bekerja pada Plate	92
Gambar 4 - 1 Daerah Operasi Kompresor	95
Gambar 4 - 2 Proses Kompresi Secara Umum	99
Gambar 4 - 3 Diagram p - V Kompresor Torak	100
Gambar 4 - 4 Grafik untuk menentukan k1 dan k2	107
Gambar 4 - 5 Rencana Susunan Poros Engkol	115
Gambar 4 - 6 Cincin Torak	119
Gambar 4 - 7 Alur Torak	120
Gambar 4 - 8 Pena Torak	121
Gambar 4 - 9 Penampang Pasak	130
Gambar 4 - 10 Rangkaian Alat Pengawalan Y - Δ.	133
Gambar 5 -1 Aliran Refrigeran dari Kolom Distilasi	137
Gambar 5 - 2 Grafik Konstanta Sieder Tate	145
Gambar 5 - 3 Ujung Kiri Penukar Panas Utama	156
Gambar 5 - 4 Bagian Tengah Penukar Panas Utama	157
Gambar 6 - 1 Ujung Kanan After Cooler	172
Gambar 6 - 2 Bagian Tengah After Cooler	173
Gambar 7 - 1 Diagram p - H siklus Kompresi Uap Ideal	178
Gambar 7 - 3 Ujung Kiri Evaporator	196
Ganbar 7 - 4 Bagian Tengah Evaporator	198
Gambar 8 - 1 Thermostat	218
Gambar 8 - 2 Katup Ekspansi Otomatis	220
Gambar 8 - 3 Katup Ekspansi Thermostatik	221
Gambar 8 - 4 Kontrol Pengaman Oli	223

Gambar 8 - 5 Dual Pressure Switch	224
Gambar 9 - 1 Akumulator	225
Gambar 9 - 2 Pemisah Oli	226
Gambar 9 - 3 Saringan Pengering	226

DAFTAR TABEL

Tabel 3 - 1 Laju Komponen Umpan dalam Fraksi Cair dan Uapnya	43
Tabel 3 - 2 Enthalpi Fraksi Cair Umpan	43
Tabel 3 - 3 Enthalpi Fraksi Uap Umpan	43
Tabel 3 - 4 Menetukan Dew Point Plate Teratas.	44
Tabel 3 - 5 Menentukan Bubble Point Plate Terbawah	45
Tabel 3 - 6 Kondisi Umpan	48
Tabel 3 - 7 Kondisi Hasil Atas (Distilate)	48
Tabel 3 - 8 Komposisi Fraksi Cair Mula - Mula	54
Tabel 3 - 9 Komposisi Hasil Atas dan Hasil Bawah yang diharapkan	54
Tabel 3 - 10 Enthalpi Uap Hasil Atas	55
Tabel 3 - 11 Enthalpi Cair Hasil Atas	55
Гаbel 3 - 12 Kuantitas dan Enthalpi Cairan Hasil Atas.	56
Гabel 3 - 13 Enthalpi Uap Reflux	56
Tabel 3 - 14 Kuantitas Cairan Hasil Bawah dan Enthalpinya	57
Tabel 3 - 15 Komposisi Uap Hasil Atas.	59
Tabel 3 - 16 Komposisi Cairan Hasil Atas	59
Tabel 3 - 17 Komposisi Uap Hasil Bawah	62
Tabel 3 - 18 Komposisi Cairan Hasil Bawah	62
Tabel 4 - 1 Menentukan Gaya Normal pada Poros Engkol	.116
Гabel 4 - 2 Dimensi Utama Kompresor Tingkat I - III	.128
Гabel 4 - 3 Dimensi Utama Kompresor Tingkat IV - VI	.129
Tabel 11 - 1 Hasil Perhitungan Uniuk Keria pada Penukar Panas	231

DAFTAR NOTASI

A	Luas permukaan	ft
a	Luas permukaan pipa per satuan panjang	ft²/ft
В	Kelajuan massa fluida hasil bawah kolom distilasi	kmol/jam
BM	Berat Molekul	kg / kmol
C	Clearance	
COP	Coeficient of Performance	
Ср	Panas jenis pada tekanan konstan	Btu/lbm.°F
D	Kelajuan massa fluida hasil atas kolom distilasi	kmol/jam
De	Diameter Ekivalen	1
E	Modulus elastisitas	psi
F	Laju fluida umpan pada kolom distilasi	kmol/jam
FLV	Laju aliran cair uap	
f	Faktor gesekan	
G	Laju massa per satuan luas.	lbm / ft ²
g	Percepatan gravitasi	ft/s ²
H, h	Enthalpi spesifik	Btu / lbm
h	koefisien perpindahan panas.	Btu/jam.Ft ² .°F
hfg	Kalor latent.	Btu/lbm
ID	Diameter dalam pipa.	inci
jh	Konstanta Sieder Tate	
k	Konduktivitas thermal	Btu/jam.ft².°F
Km	Faktor koreksi momen	
Kt	Faktor koreksi torsi	
L	Panjang pipa	ft
LMTD	Beda suhu rata - rata logaritmik	°F

UNIVERSITAS GADJAH MADA Universitas Gadjah Mada, 1997 | Diunduh dari http://etd.repository.ugm.ac.id/

m	Laju aliran massa
N	Putaran rpm
Nt	Jumlah pipa total
Nu	Bilangan Nusselt
n	Jumlah laluan
OD	Diameter luar pipainci
P	Tekanan psi
Pd	Daya poros Hp
Pr	Bilangan Prandtl
Q	Laju perpindahan panasBtu / jam
R	Konstanta gas universal
Rd	Faktor pengotoranjam . ft 2 . °F / Btu
Re	Bilangan Reynold
Rmin	Reflux minimum
r	Jari - jari
S,s	EntropiBtu/lbm.R
Sp,sg	Gravitasi spesifik
SHP	Daya kuda porosHp
T, t	Suhu°F
the	tebal inci
U	Koefisien perpindahan panas total
V	Volumein ³ , ft ³
W	Kerja Btu/jam
X	Fraksi mol hasil atas kolom distilasi
Y	Fraksi mol hasil bawah kolom distilasi

Hunf - hunf Yunani

Volatilitas relatif O.

β	Koefisien ekspansi thermal R -1
ΔD	Perubahan diameter inci
ΔΡ	Pressure droppsi
ε	Rasio clearance, emisivitas
y	Rasio panas jenis pada tekanan konstan terhadap volume konstan
η	Efisiensi %
λ	Perbandingan jari - jari poros terhadap batang torak
μ	Angka Poisson, viskositaslbm/jam.ft
θ	Rasio panjang langkah torak terhadap diameter silinder
ρ	Massa jenislbm / ft 3
Q	Tegangan psi
Tikal	as
	····
av	Average, rata - rata
av	Average, rata - rata
av B	Average, rata - rata Bottom, bawah
av B D	Average, rata - rata Bottom, bawah Distilate, atas
av B D	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan
av B D f	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas
av B D f s HK	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat
av B D f S HK	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat Inner, bagian dalam
av B D f S HK I ID	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat Inner, bagian dalam Inside Diameter, diameter bagian dalam
av B D f g HK I D LK	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat Inner, bagian dalam Inside Diameter, diameter bagian dalam Light Key, komponen ringan
av B D f g HK I D LK l	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat Inner, bagian dalam Inside Diameter, diameter bagian dalam Light Key, komponen ringan Liquid
av B D f g HK I D LK OD	Average, rata - rata Bottom, bawah Distilate, atas Feed, umpan Gas Heavy Key, komponen berat Inner, bagian dalam Inside Diameter, diameter bagian dalam Light Key, komponen ringan Liquid Outside Diameter, diameter bagian luar