Studi Analitik Bilangan Nusselt pada Konveksi Paksa dengan Syarat Batas H2 untuk Aliran Laminar Berkembang Penuh dalam Saluran Segiempat
AJI SAKA, Fauzun, S.T., M.T., Ph.D ; Indro Pranoto, S.T. M.Eng.
2015 | Tesis | S2 Teknik MesinKemajuan dalam teknologi mikrofabrikasi menyebabkan perkembangan yang pesat pada perangkat yang semakin kompak namun dengan daya yang semakin besar. Akibatnya, komponen heat sink yang juga dalam skala mikro menjadi hal yang esensial untuk perangkat tersebut. Pemahaman yang benar mengenai fenomena transport terkait transfer kalor konveksi diperlukan pada sistem mikrokanal untuk desain dan operasi. Rezim aliran laminar penting dalam kasus mikrokanal. Banyak desain heat sink mikrokanal menggunakan geometri segiempat untuk penampang salurannya. Akan tetapi, permasalahan konveksi terkait syarat batas H2 untuk aliran laminar berkembang penuh dalam kanal terebut belum sepenuhnya tuntas. Solusi analitik yang ada memberikan hasil yang masih berbeda satu sama lain. Hasil paling akurat diprediksikan justru yang diperoleh melalui metode pendekatan yang tidak murni analitik. Lebih dari itu, permasalahan H2 mencakup delapan variasi versi syarat batas yang dapat dibentuk dari keempat dinding segiempat, dimana variasi tersebut lebih aplikatif namun solusi yang tersedia lebih sedikit. Berkaitan dengan hal tersebut, disini dilakukan studi tinjauan analitik agar solusi yang eksak dapat diperoleh. Metode yang dilakukan ialah murni analisis matematis menggunakan pendekatan deret Fourier tunggal. Kasus ini termasuk dalam kategori permasalahan Neumann untuk persamaan Poisson dalam konteks umum. Bentuk solusi eksak umum telah diperoleh. Khusus untuk kasus dimana solusi khusus berupa deret tak hingga dengan fungsi ortogonal yang berbeda dengan fungsi ortogonal pada deret dari solusi homogen, bentuk solusi alternatif telah diberikan yang laju konvergensi yang lebih baik daripada solusi umum. Dengan solusi alternatif ini, hasil eksak permasalahan H2 yang mencakup delapan versi syarat batas telah diberikan bahkan hingga tujuh digit. Semua nilai pada kondisi asimtotiknya telah diberikan melalui ekstrapolasi. Makna fisis dari solusi, yang berupa bilangan Nusselt, bergantung pada parameter panjang karakteristik yang digunakan. Telah ditunjukkan bahwa diameter hidrolik bukan parameter yang tepat. Perimeter terpanasi dan akar luas penampang telah digunakan yang memiliki arti interpretasi fisik tertentu masing-masing. Hasil yang diperoleh menjadi referensi yang bermanfaat dalam desain sistem konveksi, dan konfigurasi pemanasan yang baik telah direkomendasikan.
The advancement of microfabrication technologies has led to the rapid development of more compact devices with higher power density. Heat sink component, which also in micro scale, becomes an essential prerequisite for these devices. A proper understanding of transport phenomena regarding convection heat transfer is necessary in microchannel system for design and operation. Laminar flow regime is found to be important in microchannel cases. Many designs of microchannel heat sinks have used rectangular geometry for their cross-sectional channels. However, the convection problem regarding H2 boundary conditions for a fully developed laminar flow in this channel has yet to be fully accomplished. The existing analytical solutions give the results that are still different one another. The most accurate results are predicted instead to be those obtained by approach methods which are not pure analytic. Moreover, H2 problem covers eight versions of imposed boundary conditions from the four-wall of rectangular channel, which is finding more applications but less available solutions. In reference with those, an analytical study to obtain an exact solution to the problems is performed. The method is pure mathematical analyses using a single Fourier approach. This problem is categorized as the Neumann problem for Poisson equation as in general case. A general form of solution has been successfully solved. In special case where the particular solution has the form of infinite series which has different orthogonal function from that of the infinite series of the homogenous solution, an alternative form of solution has been given as well with better convergence rate than that of the general solution. By this alternative solution, exacts results for H2 convection problem covering eight versions of boundary conditions are obtained with accuracy of up to seven digits. All values for asymptotic conditions are also predicted by extrapolation. The physical sense of the results, expressed in the term of Nusselt number, depends on the parameter of the characteristic length being used. It has been found that hydraulic diameter is not the proper one. The heated perimeter and the square root of flow area are used as the characteristic length which each of them has its own physical interpretation. The obtained results would be useful as a reference for designing the highest cooling performance for the future advanced cooling system.
Kata Kunci : mikro kanal, Nusselt, fluks seragam, laminar, berkembang penuh, segiempat